Do you want to publish a course? Click here

Evidence for length-dependent wire expansion, filament dedensification and consequent degradation of critical current density in Ag-alloy sheathed Bi-2212 wires

229   0   0.0 ( 0 )
 Added by Andrea Malagoli
 Publication date 2013
  fields Physics
and research's language is English




Ask ChatGPT about the research

It is well known that longer Bi-2212 conductors have significantly lower critical current density (Jc) than shorter ones, and recently it has become clear that a major cause of this reduction is internal gas pressure generated during heat treatment, which expands the wire diameter and dedensifies the Bi-2212 filaments. Here we report on the length-dependent expansion of 5 to 240 cm lengths of state-of-the-art, commercial Ag alloy-sheathed Bi-2212 wire after full and some partial heat treatments. Detailed image analysis along the wire length shows that the wire diameter increases with distance from the ends, longer samples often showing evident damage and leaks provoked by the internal gas pressure. Comparison of heat treatments carried out just below the melting point and with the usual melt process makes it clear that melting is crucial to developing high internal pressure. The decay of Jc away from the ends is directly correlated to the local wire diameter increase, which decreases the local Bi-2212 filament mass density and lowers Jc, often by well over 50%. It is clear that control of the internal gas pressure is crucial to attaining the full Jc of these very promising round wires and that the very variable properties of Bi-2212 wires are due to the fact that this internal gas pressure has so far not been well controlled.



rate research

Read More

Recently the interest about Bi-2212 round wire superconductor for high magnetic field use has been enhancing despite the fact that an increase of the critical current is still needed to boost its successful use in such applications. Recent studies have demonstrated that the main obstacle to current flow, especially in long wires, is the residual porosity inside these Powder-In-Tube processed conductors which develops in bubbles-agglomeration when the Bi-2212 melts. Through this work we tried to overcome this issue acting on the wire densification by changing the deformation process. Here we show the effects of groove-rolling versus drawing process on the critical current density JC and on the microstructure. In particular, groove-rolled multifilamentary wires show a JC increased by a factor of about 3 with respect to drawn wires prepared with the same Bi-2212 powder and architecture. We think that this approach in the deformation process is able to produce the required improvements both because the superconducting properties are enhanced and because it makes the fabrication process faster and cheaper.
Bi-2212 round wire is made by the powder-in-tube technique. An unavoidable property of powder-in-tube conductors is that there is about 30% void space in the as-drawn wire. We have recently shown that the gas present in the as-drawn Bi-2212 wire agglomerates into large bubbles and that they are presently the most deleterious current limiting mechanism. By densifying short 2212 wires before reaction through cold isostatic pressing (CIPping), the void space was almost removed and the gas bubble density was reduced significantly, resulting in a doubled engineering critical current density (JE) of 810 A/mm2 at 5 T, 4.2 K. Here we report on densifying Bi-2212 wire by swaging, which increased JE (4.2 K, 5 T) from 486 A/mm2 for as-drawn wire to 808 A/mm2 for swaged wire. This result further confirms that enhancing the filament packing density is of great importance for making major JE improvement in this round-wire magnet conductor.
The effect of the quality of starting powders on the microstructure and superconducting properties of in-situ processed Fe-sheathed MgB2 tapes has been investigated. Three different types of commercial atomized spherical magnesium powder and two different purities of amorphous boron powder were employed. When using the 10-micrometre magnesium as precursor powders, the Mg reacted with boron more uniformly and quickly, thus the uniformity of the fabricated MgB2 was improved and the grain size of the MgB2 was decreased, hence significant critical current density (Jc) enhancements were achieved for MgB2 tapes. Jc at 4.2 K for MgB2 tapes made from the 10 um Mg and high purity boron powders was at least a factor of ten higher than values measured for MgB2 samples made from all other starting powders. At 20 K, 5 T, the typical Jc values of the tapes were over 1.0x10^4 A/cm^2 and were much better than those of tape samples reported recently.
To meet critical current density, J$_c$, targets for the Future Circular Collider (FCC), the planned replacement for the Large Hadron Collider (LHC), the high field performance of Nb$_3$Sn must be improved, but champion J$_c$ values have remained static for the last 10 years. Making the A15 phase stoichiometric and enhancing the upper critical field H$_{c2}$ by Ti or Ta dopants are the standard strategies for enhancing high field performance but detailed recent studies show that even the best modern wires have broad composition ranges. To assess whether further improvement might be possible, we employed EXAFS to determine the lattice site location of dopants in modern high-performance Nb$_3$Sn strands with J$_c$ values amongst the best so far achieved. Although Ti and Ta primarily occupy the Nb sites in the A15 structure, we also find significant Ta occupancy on the Sn site. These findings indicate that the best performing Ti-doped stand is strongly sub-stoichiometric in Sn and that antisite disorder likely explains its high average H$_{c2}$ behavior. These new results suggest an important role for dopant and antisite disorder in minimizing superconducting property distributions and maximizing high field J$_c$ properties.
The K- and Co-doped BaFe2As2 (Ba-122) superconducting compounds are potentially useful for applications because they have upper critical fields (Hc2) of well over 50 T, Hc2 anisotropy Gamma < 2, and thin film critical current densities exceeding 1 MAcm-2 at 4.2 K. However, thin-film bicrystals of Co-doped Ba-122 clearly exhibit weak link behavior for [001] tilt misorientations of more than about 5 degrees, suggesting that textured substrates would be needed for applications, as in the cuprates. Here we present a contrary and very much more positive result in which untextured polycrystalline (Ba0.6K0.4)Fe2As2 bulks and round wires with high grain boundary density have transport critical current densities well over 0.1 MAcm-2 (SF, 4.2 K), more than 10 times higher than that of any other ferropnictide wire. The enhanced grain connectivity is ascribed to their much improved phase purity and to the enhanced vortex stiffness of this low-anisotropy compound (Gamma ~ 1-2) compared to YBa2Cu3O7-x (Gamma ~ 5).
comments
Fetching comments Fetching comments
Sign in to be able to follow your search criteria
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا