Do you want to publish a course? Click here

Combinatorics of Matrix Factorizations and Integrable Systems

185   0   0.0 ( 0 )
 Added by Anton Dzhamay
 Publication date 2013
  fields Physics
and research's language is English
 Authors Anton Dzhamay




Ask ChatGPT about the research

We study relations between the eigenvectors of rational matrix functions on the Riemann sphere. Our main result is that for a subclass of functions that are products of two elementary blocks it is possible to represent these relations in a combinatorial-geometric way using a diagram of a cube. In this representation, vertices of the cube represent eigenvectors, edges are labeled by differences of locations of zeroes and poles of the determinant of our matrix function, and each face corresponds to a particular choice of a coordinate system on the space of such functions. Moreover, for each face this labeling encodes, in a neat and efficient way, a generating function for the expressions of the remaining four eigenvectors that label the opposing face of the cube in terms of the coordinates represented by the chosen face. The main motivation behind this work is that when our matrix is a Lax matrix of a discrete integrable system, such generating functions can be interpreted as Lagrangians of the system, and a choice of a particular face corresponds to a choice of the direction of the motion.



rate research

Read More

213 - Takayuki Tsuchida 2011
We propose a new type of reduction for integrable systems of coupled matrix PDEs; this reduction equates one matrix variable with the transposition of another multiplied by an antisymmetric constant matrix. Via this reduction, we obtain a new integrable system of coupled derivative mKdV equations and a new integrable variant of the massive Thirring model, in addition to the already known systems. We also discuss integrable semi-discretizations of the obtained systems and present new soliton solutions to both continuous and semi-discrete systems. As a by-product, a new integrable semi-discretization of the Manakov model (self-focusing vector NLS equation) is obtained.
201 - B.G.Konopelchenko 2009
Interrelations between discrete deformations of the structure constants for associative algebras and discrete integrable systems are reviewed. A theory of deformations for associative algebras is presented. Closed left ideal generated by the elements representing the multiplication table plays a central role in this theory. Deformations of the structure constants are generated by the Deformation Driving Algebra and governed by the central system of equations. It is demonstrated that many discrete equations like discrete Boussinesq equation, discrete WDVV equation, discrete Schwarzian KP and BKP equations, discrete Hirota-Miwa equations for KP and BKP hierarchies are particular realizations of the central system. An interaction between the theories of discrete integrable systems and discrete deformations of associative algebras is reciprocal and fruitful.An interpretation of the Menelaus relation (discrete Schwarzian KP equation), discrete Hirota-Miwa equation for KP hierarchy, consistency around the cube as the associativity conditions and the concept of gauge equivalence, for instance, between the Menelaus and KP configurations are particular examples.
Coisotropic deformations of algebraic varieties are defined as those for which an ideal of the deformed variety is a Poisson ideal. It is shown that coisotropic deformations of sets of intersection points of plane quadrics, cubics and space algebraic curves are governed, in particular, by the dKP, WDVV, dVN, d2DTL equations and other integrable hydrodynamical type systems. Particular attention is paid to the study of two- and three-dimensional deformations of elliptic curves. Problem of an appropriate choice of Poisson structure is discussed.
219 - B.G.Konopelchenko 2008
Quantum deformations of the structure constants for a class of associative noncommutative algebras are studied. It is shown that these deformations are governed by the quantum central systems which has a geometrical meaning of vanishing Riemann curvature tensor for Christoffel symbols identified with the structure constants. A subclass of isoassociative quantum deformations is described by the oriented associativity equation and, in particular, by the WDVV equation. It is demonstrated that a wider class of weakly (non)associative quantum deformations is connected with the integrable soliton equations too. In particular, such deformations for the three-dimensional and infinite-dimensional algebras are described by the Boussinesq equation and KP hierarchy, respectively.
137 - Yuqin Yao , Yunbo Zeng 2010
Based on the Kupershmidt deformation for any integrable bi-Hamiltonian systems presented in [4], we propose the generalized Kupershmidt deformation to construct new systems from integrable bi-Hamiltonian systems, which provides a nonholonomic perturbation of the bi-Hamiltonian systems. The generalized Kupershmidt deformation is conjectured to preserve integrability. The conjecture is verified in a few representative cases: KdV equation, Boussinesq equation, Jaulent-Miodek equation and Camassa-Holm equation. For these specific cases, we present a general procedure to convert the generalized Kupershmidt deformation into the integrable Rosochatius deformation of soliton equation with self-consistent sources, then to transform it into a $t$-type bi-Hamiltonian system. By using this generalized Kupershmidt deformation some new integrable systems are derived. In fact, this generalized Kupershmidt deformation also provides a new method to construct the integrable Rosochatius deformation of soliton equation with self-consistent sources.
comments
Fetching comments Fetching comments
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا