Do you want to publish a course? Click here

New reductions of integrable matrix PDEs: $Sp(m)$-invariant systems

222   0   0.0 ( 0 )
 Added by Takayuki Tsuchida
 Publication date 2011
  fields Physics
and research's language is English




Ask ChatGPT about the research

We propose a new type of reduction for integrable systems of coupled matrix PDEs; this reduction equates one matrix variable with the transposition of another multiplied by an antisymmetric constant matrix. Via this reduction, we obtain a new integrable system of coupled derivative mKdV equations and a new integrable variant of the massive Thirring model, in addition to the already known systems. We also discuss integrable semi-discretizations of the obtained systems and present new soliton solutions to both continuous and semi-discrete systems. As a by-product, a new integrable semi-discretization of the Manakov model (self-focusing vector NLS equation) is obtained.



rate research

Read More

We present in this report 1+1 dimensional nonlinear partial differential equation integrable through inverse scattering transform. The integrable system under consideration is a pseudo-Hermitian reduction of a matrix generalization of classical 1+1 dimensional Heisenberg ferromagnet equation. We derive recursion operators and describe the integrable hierarchy related to that matrix equation.
We obtain new gauge-invariant forms of two-dimensional integrable systems of nonlinear equations: the Sawada-Kotera and Kaup-Kuperschmidt system, the generalized system of dispersive long waves, and the Nizhnik-Veselov-Novikov system. We show how these forms imply both new and well-known two-dimensional integrable nonlinear equations: the Sawada-Kotera equation, Kaup-Kuperschmidt equation, dispersive long-wave system, Nizhnik-Veselov-Novikov equation, and modified Nizhnik-Veselov-Novikov equation. We consider Miura-type transformations between nonlinear equations in different gauges.
New manifestly gauge-invariant forms of two-dimensional generalized dispersive long-wave and Nizhnik-Veselov-Novikov systems of integrable nonlinear equations are presented. It is shown how in different gauges from such forms famous two-dimensional generalization of dispersive long-wave system of equations, Nizhnik-Veselov-Novikov and modified Nizhnik-Veselov-Novikov equations and other known and new integrable nonlinear equations arise. Miura-type transformations between nonlinear equations in different gauges are considered.
We consider the propagation of short waves which generate waves of much longer (infinite) wave-length. Model equations of such long wave-short wave resonant interaction, including integrable ones, are well-known and have received much attention because of their appearance in various physical contexts, particularly fluid dynamics and plasma physics. Here we introduce a new long wave-short wave integrable model which generalises those first proposed by Yajima-Oikawa and by Newell. By means of its associated Lax pair, we carry out the linear stability analysis of its continuous wave solutions by introducing the stability spectrum as an algebraic curve in the complex plane. This is done starting from the construction of the eigenfunctions of the linearised long wave-short wave model equations. The geometrical features of this spectrum are related to the stability/instability properties of the solution under scrutiny. Stability spectra for the plane wave solutions are fully classified in the parameter space together with types of modulational instabilities.
It was observed by Tod and later by Dunajski and Tod that the Boyer-Finley (BF) and the dispersionless Kadomtsev-Petviashvili (dKP) equations possess solutions whose level surfaces are central quadrics in the space of independent variables (the so-called central quadric ansatz). It was demonstrated that generic solutions of this type are described by Painleve equations PIII and PII, respectively. The aim of our paper is threefold: -- Based on the method of hydrodynamic reductions, we classify integrable models possessing the central quadric ansatz. This leads to the five canonical forms (including BF and dKP). -- Applying the central quadric ansatz to each of the five canonical forms, we obtain all Painleve equations PI - PVI, with PVI corresponding to the generic case of our classification. -- We argue that solutions coming from the central quadric ansatz constitute a subclass of two-phase solutions provided by the method of hydrodynamic reductions.
comments
Fetching comments Fetching comments
Sign in to be able to follow your search criteria
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا