Do you want to publish a course? Click here

The Kitaev-Ising model, Transition between topological and ferromagnetic order

112   0   0.0 ( 0 )
 Added by Vahid Karimipour
 Publication date 2013
  fields Physics
and research's language is English




Ask ChatGPT about the research

We study the Kitaev-Ising model, where ferromagnetic Ising interactions are added to the Kitaev model on a lattice. This model has two phases which are characterized by topological and ferromagnetic order. Transitions between these two kinds of order are then studied on a quasi-one dimensional system, a ladder, and on a two dimensional periodic lattice, a torus. By exactly mapping the quasi-one dimensional case to an anisotropic XY chain we show that the transition occurs at zero $lambda$ where $lambda$ is the strength of the ferromagnetic coupling. In the two dimensional case the model is mapped to a 2D Ising model in transverse field, where it shows a transition at finite value of $lambda$. A mean field treatment reveals the qualitative character of the transition and an approximate value for the transition point. Furthermore with perturbative calculation, we show that expectation value of Wilson loops behave as expected in the topological and ferromagnetic phases.



rate research

Read More

We investigate the diagonal entropy for ground states of the extended Kitaev chains with extensive pairing and hopping terms. The systems contain rich topological phases equivalently represented by topological invariant winding numbers and Majorana zero modes. Both the finite size scaling law and block scaling law of the diagonal entropy are studied, which indicates that the diagonal entropy demonstrates volume effect. The parameter of volume term is regarded as the diagonal entropy density, which can identify the critical points of symmetry-protected topological phase transitions efficiently in the studied models, even for those with higher winding numbers. The formulation of block scaling law and the capability of diagonal entropy density in detecting topological phase transitions are independent of the chosen bases. In order to manifest the advantage of diagonal entropy, we also calculate the global entanglement, which can not show clear signatures of the topological phase transitions. This work provides a new quantum-informatic approach to characterize the feature of the topologically ordered states and may motivate a deep understanding of the quantum coherence and diagonal entropy in various condensed matter systems.
84 - Darshan G. Joshi 2018
With the advancement in synthesizing and analyzing Kitaev materials, the Kitaev-Heisenberg model on the honeycomb lattice has attracted a lot of attention in the last few years. Several variations, which include additional anisotropic interactions as well as response to external magnetic field, have been investigated and many exotic ordered phases have been discussed. On the other hand, quantum spin systems are proving to be a fertile ground to realize and study bosonic analogues of fermionic topological states of matter. Using the spin-wave theory we show that the ferromagnetic phase of the extended Kitaev-Heisenberg model hosts topological excitations. Along the zig-zag edge of the honeycomb lattice we find chiral edge states, which are protected by a non-zero Chern number topological invariant. We discuss two different scenarios for the direction of the spin polarization namely $[001]$ and $[111]$, which are motivated by possible directions of applied field. Dynamic structure factor, accessible in scattering experiments, is shown to exhibit signatures of these topological edge excitations. Furthermore, we show that in case of spin polarization in $[001]$ direction, a topological phase transition occurs once the Kitaev couplings are made anisotropic.
We consider a topological Hamiltonian and establish a correspondence between its eigenstates and the resource for a causal order game introduced in Ref. [1], known as process matrix. We show that quantum correlations generated in the quantum many-body energy eigenstates of the model can mimic the statistics that can be obtained by exploiting different quantum measurements on the process matrix of the game. This provides an interpretation of the expectation values of the observables computed for the quantum many-body states in terms of success probabilities of the game. As a result, we show that the ground state of the model can be related to the optimal strategy of the causal order game. Along with this, we show that a correspondence between the considered topological quantum Hamiltonian and the causal order game can also be made by relating the behavior of topological order parameters characterizing different phases of the model with the different regions of the causal order game.
In this paper and its sequel, we construct topologically invariant defects in two-dimensional classical lattice models and quantum spin chains. We show how defect lines commute with the transfer matrix/Hamiltonian when they obey the defect commutation relations, cousins of the Yang-Baxter equation. These relations and their solutions can be extended to allow defect lines to branch and fuse, again with properties depending only on topology. In this part I, we focus on the simplest example, the Ising model. We define lattice spin-flip and duality defects and their branching, and prove they are topological. One useful consequence is a simple implementation of Kramers-Wannier duality on the torus and higher genus surfaces by using the fusion of duality defects. We use these topological defects to do simple calculations that yield exact properties of the conformal field theory describing the continuum limit. For example, the shift in momentum quantization with duality-twisted boundary conditions yields the conformal spin 1/16 of the chiral spin field. Even more strikingly, we derive the modular transformation matrices explicitly and exactly.
We introduce and analyze a quantum spin/Majorana chain with a tricritical Ising point separating a critical phase from a gapped phase with order-disorder coexistence. We show that supersymmetry is not only an emergent property of the scaling limit, but manifests itself on the lattice. Namely, we find explicit lattice expressions for the supersymmetry generators and currents. Writing the Hamiltonian in terms of these generators allows us to find the ground states exactly at a frustration-free coupling. These confirm the coexistence between two (topologically) ordered ground states and a disordered one in the gapped phase. Deforming the model by including explicit chiral symmetry breaking, we find the phases persist up to an unusual chiral phase transition where the supersymmetry becomes exact even on the lattice.
comments
Fetching comments Fetching comments
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا