Do you want to publish a course? Click here

The evolution of the AGN content in groups up to z~1

150   0   0.0 ( 0 )
 Added by Laura Pentericci
 Publication date 2013
  fields Physics
and research's language is English




Ask ChatGPT about the research

Determining the AGN content in structures of different mass/velocity dispersion and comparing them to higher mass/lower redshift analogs is important to understand how the AGN formation process is related to environmental properties. We use our well-tested cluster finding algorithm to identify structures in the GOODS North and South fields, exploiting the available spectroscopic redshifts and accurate photometric redshifts. We identify 9 structures in GOODS-south (presented in a previous paper) and 8 new structures in GOODS-north. We only consider structures where at least 2/3 of the members brighter than M_R=-20 have a spectroscopic redshift. For those group members that coincide with X-ray sources in the 4 and 2 Msec Chandra source catalogs respectively, we determine if the X-ray emission originates from AGN activity or it is related to the galaxies star-formation activity. We find that the fraction of AGN with Log L_H > 42 erg/s in galaxies with M_R < -20 is on average 6.3+-1.3%, much higher than in lower redshift groups of similar mass and more than double the fraction found in massive clusters at a similarly high redshift. We then explore the spatial distribution of AGN in the structures and find that they preferentially populate the outer regions. The colors of AGN host galaxies in structures tend to be confined to the green valley, thus avoiding the blue cloud and, partially, also the red-sequence, contrary to what happens in the field. We finally compare our results to the predictions of two sets of semi analytic models to investigate the evolution of AGN and evaluate potential triggering and fueling mechanisms. The outcome of this comparison attests the importance of galaxy encounters, not necessarily leading to mergers, as an efficient AGN triggering mechanism. (abridged)



rate research

Read More

112 - P.N.Best , L.M.Ker , C. Simpson 2014
This paper presents the first measurement of the radio luminosity function of jet-mode (radiatively-inefficient) radio-AGN out to z=1, in order to investigate the cosmic evolution of radio-AGN feedback. Eight radio source samples are combined to produce a catalogue of 211 radio-loud AGN with 0.5<z<1.0, which are spectroscopically classified into jet-mode and radiative-mode (radiatively-efficient) AGN classes. Comparing with large samples of local radio-AGN from the Sloan Digital Sky Survey, the cosmic evolution of the radio luminosity function of each radio-AGN class is independently derived. Radiative-mode radio-AGN show an order of magnitude increase in space density out to z~1 at all luminosities, consistent with these AGN being fuelled by cold gas. In contrast, the space density of jet-mode radio-AGN decreases with increasing redshift at low radio luminosities (L_1.4 < 1e24 W/Hz) but increases at higher radio luminosities. Simple models are developed to explain the observed evolution. In the best-fitting models, the characteristic space density of jet-mode AGN declines with redshift in accordance with the declining space density of massive quiescent galaxies, which fuel them via cooling of gas in their hot haloes. A time delay of 1.5-2 Gyr may be present between the quenching of star formation and the onset of jet-mode radio-AGN activity. The behaviour at higher radio luminosities can be explained either by an increasing characteristic luminosity of jet-mode radio-AGN activity with redshift (roughly as (1+z) cubed) or if the jet-mode radio-AGN population also includes some contribution of cold-gas-fuelled sources seen at a time when their accretion rate was low. Higher redshifts measurements would distinguish between these possibilities.
124 - M. Perna , M.T. Sargent , M. Brusa 2018
The standard AGN-galaxy co-evolutionary scenario predicts a phase of deeply buried supermassive black hole growth coexisting with a starburst (SB) before feedback phenomena deplete the cold molecular gas reservoir of the galaxy and an optically luminous QSO is revealed (SB-QSO evolutionary sequence). The aim of this work is to measure the cold gas reservoir of three highly obscured QSOs to test if their gas fraction is similar to that of sub-millimeter galaxies (SMGs), as expected by some models, and place these measurements in the context of the SB-QSO framework. We target CO(1-0) transition in BzK4892, a Compton Thick (CT) QSO at z=2.6, CO(1-0) in BzK8608 and CO(2-1) in CDF153, two highly obscured QSOs at z=2.5 and z=1.5, respectively. For all these targets, we place 3$sigma$ upper limits on the CO, with $L_{CO} < (1.5div 2.8)times 10^{10}$ K km/s pc$^2$. We also compare the molecular gas conditions of our targets with those of other systems at z>1, considering normal star forming galaxies and SMGs, unobscured and obscured AGN from the literature. For the AGN samples, we provide an updated and (almost) complete collection of targets with CO follow-up. BzK4892 displays a high star formation efficiency (SFE$=L_{IR}/L_{CO}>410$ L$_{odot}$/(K km s$^{-1}$ pc$^2$)) and a gas fraction $f_{gas}<0.1$. Less stringent constraints are derived for the other two targets ($f_{gas}<0.5$ and SFE$>10$). From the comparison with literature data, we found that a) obscured AGN at z>1 are associated with higher SFE and lower $f_{gas}$ with respect to star forming galaxies; b) mildly and highly obscured active galaxies have comparable gas fractions; c) the SFE of CT and obscured AGN are similar to those of unobscured AGN. Within the SB-QSO framework, these findings could be consistent with a scenario where feedback can impact the host galaxy already from the early phases of the SB-QSO sequence.
113 - A. Georgakakis 2011
We explore the evolution with redshift of the rest-frame colours and space densities of AGN hosts (relative to normal galaxies) to shed light on the dominant mechanism that triggers accretion onto supermassive black holes as a function of cosmic time. Data from serendipitous wide-area XMM surveys of the SDSS footprint (XMM/SDSS, Needles in the Haystack survey) are combined with Chandra deep observations in the AEGIS, GOODS-North and GOODS-South to compile uniformly selected samples of moderate luminosity X-ray AGN [L_X(2-10keV) = 1e41-1e44erg/s] at redshifts 0.1, 0.3 and 0.8. It is found that the fraction of AGN hosted by red versus blue galaxies does not change with redshift. Also, the X-ray luminosity density associated with either red or blue AGN hosts remains nearly constant since z=0.8. X-ray AGN represent a roughly fixed fraction of the space density of galaxies of given optical luminosity at all redshifts probed by our samples. In contrast the fraction of X-ray AGN among galaxies of a given stellar mass decreases with decreasing redshift. These findings suggest that the same process or combination of processes for fueling supermassive black holes are in operation in the last 5 Gyrs of cosmic time. The data are consistent with a picture in which the drop of the accretion power during that period (1dex since z=0.8) is related to the decline of the space density of available AGN hosts, as a result of the evolution of the specific star-formation rate of the overall galaxy population. Scenarios which attribute the evolution of moderate luminosity AGN since z approx 1 to changes in the suppermassive black hole accretion mode are not favored by our results.
In the local Universe, galaxy properties show a strong dependence on environment. In cluster cores, early type galaxies dominate, whereas star-forming galaxies are more and more common in the outskirts. At higher redshifts and in somewhat less dense environments (e.g. galaxy groups), the situation is less clear. One open issue is that of whether and how the star formation rate (SFR) of galaxies in groups depends on the distance from the centre of mass. To shed light on this topic, we have built a sample of X-ray selected galaxy groups at 0<z<1.6 in various blank fields (ECDFS, COSMOS, GOODS). We use a sample of spectroscopically confirmed group members with stellar mass M >10^10.3 M_sun in order to have a high spectroscopic completeness. As we use only spectroscopic redshifts, our results are not affected by uncertainties due to projection effects. We use several SFR indicators to link the star formation (SF) activity to the galaxy environment. Taking advantage of the extremely deep mid-infrared Spitzer MIPS and far-infrared Herschel PACS observations, we have an accurate, broad-band measure of the SFR for the bulk of the star-forming galaxies. We use multi-wavelength SED fitting techniques to estimate the stellar masses of all objects and the SFR of the MIPS and PACS undetected galaxies. We analyse the dependence of the SF activity, stellar mass and specific SFR on the group-centric distance, up to z~1.6, for the first time. We do not find any correlation between the mean SFR and group-centric distance at any redshift. We do not observe any strong mass segregation either, in agreement with predictions from simulations. Our results suggest that either groups have a much smaller spread in accretion times with respect to the clusters and that the relaxation time is longer than the group crossing time.
We present an observationally motivated model to connect the AGN and galaxy populations at 0.2<z<1.0 and predict the AGN X-ray luminosity function (XLF). We start with measurements of the stellar mass function of galaxies (from the Prism Multi-object Survey) and populate galaxies with AGNs using models for the probability of a galaxy hosting an AGN as a function of specific accretion rate. Our model is based on measurements indicating that the specific accretion rate distribution is a universal function across a wide range of host stellar mass with slope gamma_1 = -0.65 and an overall normalization that evolves with redshift. We test several simple assumptions to extend this model to high specific accretion rates (beyond the measurements) and compare the predictions for the XLF with the observed data. We find good agreement with a model that allows for a break in the specific accretion rate distribution at a point corresponding to the Eddington limit, a steep power-law tail to super-Eddington ratios with slope gamma_2 = -2.1 +0.3 -0.5, and a scatter of 0.38 dex in the scaling between black hole and host stellar mass. Our results show that samples of low luminosity AGNs are dominated by moderately massive galaxies (M* ~ 10^{10-11} M_sun) growing with a wide range of accretion rates due to the shape of the galaxy stellar mass function rather than a preference for AGN activity at a particular stellar mass. Luminous AGNs may be a severely skewed population with elevated black hole masses relative to their host galaxies and in rare phases of rapid accretion.
comments
Fetching comments Fetching comments
Sign in to be able to follow your search criteria
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا