Do you want to publish a course? Click here

Strength of the Vortex-Pinning Interaction from Real-Time Dynamics

175   0   0.0 ( 0 )
 Publication date 2013
  fields Physics
and research's language is English




Ask ChatGPT about the research

We present an efficient and general method to compute vortex-pinning interactions - which arise in neutron stars, superconductors, and trapped cold atoms - at arbitrary separations using real-time dynamics. This method overcomes uncertainties associated with matter redistribution by the vortex position and the related choice of ensemble that plague the typical approach of comparing energy differences between stationary pinned and unpinned configurations: uncertainties that prevent agreement in the literature on the sign and magnitude of the vortex-nucleus interaction in the crust of neutron stars. We demonstrate and validate the method with Gross-Pitaevskii-like equations for the unitary Fermi gas, and demonstrate how the technique of adiabatic state preparation with time-dependent simulation can be used to calculate vortex-pinning interactions in fermionic systems such as the vortex-nucleus interaction in the crust of neutron stars.



rate research

Read More

We investigate the dynamics of a quantized vortex and a nuclear impurity immersed in a neutron superfluid within a fully microscopic time-dependent three-dimensional approach. The magnitude and even the sign of the force between the quantized vortex and the nuclear impurity have been a matter of debate for over four decades. We determine that the vortex and the impurity repel at neutron densities, 0.014 fm$^{-3}$ and 0.031 fm$^{-3}$, which are relevant to the neutron star crust and the origin of glitches, while previous calculations have concluded that the force changes its sign between these two densities and predicted contradictory signs. The magnitude of the force increases with the density of neutron superfluid, while the magnitude of the pairing gap decreases in this density range.
The nature of the interaction between superfluid vortices and the neutron star crust, conjectured by Anderson and Itoh in 1975 to be at the heart vortex creep and the cause of glitches, has been a long-standing question in astrophysics. Using a qualitatively new approach, we follow the dynamics as superfluid vortices move in response to the presence of nuclei (nuclear defects in the crust). The resulting motion is perpendicular to the force, similar to the motion of a spinning top when pushed. We show that nuclei repel vortices in the neutron star crust, and characterize the force as a function of the vortex-nucleus separation.
Plasma balls are droplets of deconfined plasma surrounded by a confining vacuum. We present the first holographic simulation of their real-time evolution via the dynamics of localized, finite-energy black holes in the five-dimensional anti-de Sitter (AdS) soliton background. The dual gauge theory is four-dimensional, N=4 super Yang-Mills compactified on a circle with supersymmetry-breaking boundary conditions. We consider horizonless initial data sourced by a massless scalar field. Prompt scalar field collapse then produces an excited black hole at the bottom of the geometry together with gravitational and scalar radiation. The radiation disperses to infinity in the noncompact directions and corresponds to particle production in the dual gauge theory. The black hole evolves toward the dual of an equilibrium plasma ball on a time scale longer than naively expected. This feature is a direct consequence of confinement and is caused by long-lived, periodic disturbances bouncing between the bottom of the AdS soliton and the AdS boundary.
We consider the Abelian Higgs model in 3+1 dimensions with vortex lines, into which charged fermions are introduced. This could be viewed as a model of a type-II superconductor with unpaired electrons (or holes), analogous to the boson-fermion model of high-$T_c$ superconductors but one in which the bosons and fermions interact only through the electromagnetic gauge field. We investigate the dual formulation of this model, which is in terms of a massive antisymmetric tensor gauge field $B_{mu u}$ mediating the interaction of the vortex lines. This field couples to the fermions through a nonlocal spin-gauge interaction term. We then calculate the quantum correction due to the fermions at one loop and show that due to the presence of this new nonlocal term a topological $B wedge F$ interaction is induced in the effective action, leading to an increase in the mass of both the photon and the tensor gauge field. Additionally, we find a Coulomb potential between the electrons, but with a large dielectric constant generated by the one-loop effects.
167 - M. Kohno 2012
The contribution of a chiral three-nucleon force to the strength of an effective spin-orbit coupling is estimated. We first construct a reduced two-body interaction by folding one-nucleon degrees of freedom of the three-nucleon force in nuclear matter. The spin-orbit strength is evaluated by a Scheerbaum factor obtained by the $G$-matrix calculation in nuclear matter with the two-nucleon interaction plus the reduced two-nucleon interaction. The problem of the insufficiency of modern realistic two-nucleon interactions to account for the empirical spin-orbit strength is resolved. It is also indicated that the spin-orbit coupling is weaker in the neutron-rich environment. Because the spin-orbit component from the three-nucleon force is determined by the low-energy constants fixed in the two-nucleon sector, there is little uncertainty in the present estimation.
comments
Fetching comments Fetching comments
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا