No Arabic abstract
Using $N$-body simulations ($Nsim 10^6 - 10^7$), we examine how a non-axisymmetric dark halo affects the dynamical evolution of the structure in collisionless (stellar) discs. We demonstrate how the model parameters such as mass of the halo, initial conditions in the disc and the halo axes ratio affect morphology and kinematics of the stellar discs. We show that a non-axisymmetric halo can generate a large-scale spiral density pattern in the embedded stellar disc. The pattern is observed in the disc for many periods of its revolution, even if the disc is gravitationally over-stable. The growth of the spiral arms is not accompanied by significant dynamical heating of the disc, irrelevant to its initial parameters. We also investigate transformation of the dark halos shape driven by the long-lived spiral pattern in the disc . We show that the analysis of the velocity field in the stellar disc and in the spiral pattern gives us a possibility to figure out the spatial orientation of the triaxial-shaped dark halo and to measure the triaxiality.
Using estimates of dark halo masses from satellite kinematics, weak gravitational lensing, and halo abundance matching, combined with the Tully-Fisher and Faber-Jackson relations, we derive the mean relation between the optical, V_opt, and virial, V_200, circular velocities of early- and late-type galaxies at redshift z~0. For late-type galaxies V_opt ~ V_200 over the velocity range V_opt=90-260 km/s, and is consistent with V_opt = V_maxh (the maximum circular velocity of NFW dark matter haloes in the concordance LCDM cosmology). However, for early-type galaxies V_opt e V_200, with the exception of early-type galaxies with V_opt simeq 350 km/s. This is inconsistent with early-type galaxies being, in general, globally isothermal. For low mass (V_opt < 250 km/s) early-types V_opt > V_maxh, indicating that baryons have modified the potential well, while high mass (V_opt > 400 km/s) early-types have V_opt < V_maxh. Folding in measurements of the black hole mass - velocity dispersion relation, our results imply that the supermassive black hole - halo mass relation has a logarithmic slope which varies from ~1.4 at halo masses of ~10^{12} Msun/h to ~0.65 at halo masses of 10^{13.5} Msun/h. The values of V_opt/V_200 we infer for the Milky Way and M31 are lower than the values currently favored by direct observations and dynamical models. This offset is due to the fact that the Milky Way and M31 have higher V_opt and lower V_200 compared to typical late-type galaxies of the same stellar masses. We show that current high resolution cosmological hydrodynamical simulations are unable to form galaxies which simultaneously reproduce both the V_opt/V_200 ratio and the V_opt-M_star (Tully-Fisher/Faber-Jackson) relation.
N-body simulations predict that dark matter haloes are described by specific density profiles on both galactic- and cluster-sized scales. Weak gravitational lensing through the measurements of their first and second order properties, shear and flexion, is a powerful observational tool for investigating the true shape of these profiles. One of the three-parameter density profiles recently favoured in the description of dark matter haloes is the Einasto profile. We present exact expressions for the shear and the first and second flexions of Einasto dark matter haloes derived using a Mellin-transform formalism in terms of the Fox H and Meijer G functions, that are valid for general values of the Einasto index. The resulting expressions can be written as series expansions that permit us to investigate the asymptotic behaviour of these quantities. Moreover, we compare the shear and flexion of the Einasto profile with those of different mass profiles including the singular isothermal sphere, the Navarro-Frenk-White profile, and the Sersic profile. We investigate the concentration and index dependences of the Einasto profile, finding that the shear and second flexion could be used to determine the halo concentration, whilst for the Einasto index the shear and first and second flexions may be employed. We also provide simplified expressions for the weak lensing properties and other lensing quantities in terms of the generalized hypergeometric function.
We present N-body simulations of a new class of self-interacting dark matter models, which do not violate any astrophysical constraints due to a non-power-law velocity dependence of the transfer cross section which is motivated by a Yukawa-like new gauge boson interaction. Specifically, we focus on the formation of a Milky Way-like dark matter halo taken from the Aquarius project and re-simulate it for a couple of representative cases in the allowed parameter space of this new model. We find that for these cases, the main halo only develops a small core (~1 kpc) followed by a density profile identical to that of the standard cold dark matter scenario outside of that radius. Neither the subhalo mass function nor the radial number density of subhaloes are altered in these models but there is a significant change in the inner density structure of subhaloes resulting in the formation of a large density core. As a consequence, the inner circular velocity profiles of the most massive subhaloes differ significantly from the cold dark matter predictions and we demonstrate that they are compatible with the observational data of the brightest Milky Way dSphs in such a velocity-dependent self-interacting dark matter scenario. Specifically, and contrary to the cold dark matter case, there are no subhaloes that are more concentrated than what is inferred from the kinematics of the Milky Way dSphs. We conclude that these models offer an interesting alternative to the cold dark matter model that can reduce the recently reported tension between the brightest Milky Way satellites and the dense subhaloes found in cold dark matter simulations.
We have performed a series of numerical experiments to investigate how the primordial thermal velocities of fermionic dark matter particles affect the physical and phase space density profiles of the dark matter haloes into which they collect. The initial particle velocities induce central cores in both profiles, which can be understood in the framework of phase space density theory. We find that the maximum coarse-grained phase space density of the simulated haloes (computed in 6 dimensional phase space using the EnBid code) is very close to the theoretical fine-grained upper bound, while the pseudo phase space density, Q ~ {rho}/{sigma}^3, overestimates the maximum phase space density by up to an order of magnitude. The density in the inner regions of the simulated haloes is well described by a pseudo-isothermal profile with a core. We have developed a simple model based on this profile which, given the observed surface brightness profile of a galaxy and its central velocity dispersion, accurately predicts its central phase space density. Applying this model to the dwarf spheroidal satellites of the Milky Way yields values close to 0.5 keV for the mass of a hypothetical thermal warm dark matter particle, assuming the satellite haloes have cores produced by warm dark matter free streaming. Such a small value is in conflict with the lower limit of 1.2 keV set by observations of the Lyman-{alpha} forest. Thus, if the Milky Way dwarf spheroidal satellites have cores, these are likely due to baryonic processes associated with the forming galaxy, perhaps of the kind proposed by Navarro, Eke and Frenk and seen in recent simulations of galaxy formation in the cold dark matter model.
We apply our recently proposed quadratic genetic modification approach to generating and testing the effects of alternative mass accretion histories for a single $Lambda$CDM halo. The goal of the technique is to construct different formation histories, varying the overall contribution of mergers to the fixed final mass. This enables targeted studies of galaxy and dark matter halo formations sensitivity to the smoothness of mass accretion. Here, we focus on two dark matter haloes, each with four different mass accretion histories. We find that the concentration of both haloes systematically decreases as their merger history becomes smoother. This causal trend tracks the known correlation between formation time and concentration parameters in the overall halo population. At fixed formation time, we further establish that halo concentrations are sensitive to the order in which mergers happen. This ability to study an individual halos response to variations in its history is highly complementary to traditional methods based on emergent correlations from an extended halo population.