Do you want to publish a course? Click here

Andreev experiments on superconductor/ferromagnet point contacts

173   0   0.0 ( 0 )
 Added by Gernot Goll
 Publication date 2013
  fields Physics
and research's language is English




Ask ChatGPT about the research

Andreev reflection is a smart tool to investigate the spin polarisation P of the current through point contacts between a superconductor and a ferromagnet. We compare different models to extract P from experimental data and investigate the dependence of P on different contact parameters.



rate research

Read More

We have measured the non-local resistance of aluminum-iron spin-valve structures fabricated by e-beam lithography and shadow evaporation. The sample geometry consists of an aluminum bar with two or more ferromagnetic wires forming point contacts to the aluminum at varying distances from each other. In the normal state of aluminum, we observe a spin-valve signal which allows us to control the relative orientation of the magnetizations of the ferromagnetic contacts. In the superconducting state, at low temperatures and excitation voltages well below the gap, we observe a spin-dependent non-local resistance which decays on a smaller length scale than the normal-state spin-valve signal. The sign, magnitude and decay length of this signal is consistent with predictions made for crossed Andreev reflection (CAR).
124 - Audrey Cottet , Benoit Doucot , 2008
We have calculated the finite-frequency current noise of a superconductor-ferromagnet quantum point contact (SF QPC). This signal is qualitatively affected by the spin-dependence of interfacial phase shifts (SDIPS) acquired by electrons upon reflection on the QPC. For a weakly transparent QPC, noise steps appear at frequencies or voltages determined directly by the SDIPS. These steps can occur at experimentally accessible temperatures and frequencies. Finite frequency noise is thus a promising tool to characterize the scattering properties of a SF QPC.
Nanostructured superconductor/ferromagnet heterocontacts are studied in the different transport regimes of point-contact spectroscopy. Direct measurements of the nanocontact size by scanning electron microscopy allow a comparison with theoretical models for contact-size estimates of heterocontacts. Our experimental data give evidence that size estimates yield reasonable values for the point-contact diameter $d$ as long as the samples are carefully characterized with respect to the local electronic parameters.
88 - C. Janvier 2015
Coherent control of quantum states has been demonstrated in a variety of superconducting devices. In all these devices, the variables that are manipulated are collective electromagnetic degrees of freedom: charge, superconducting phase, or flux. Here, we demonstrate the coherent manipulation of a quantum system based on Andreev bound states, which are microscopic quasiparticle states inherent to superconducting weak links. Using a circuit quantum electrodynamics setup we perform single-shot readout of this Andreev qubit. We determine its excited state lifetime and coherence time to be in the microsecond range. Quantum jumps and parity switchings are observed in continuous measurements. In addition to possible quantum information applications, such Andreev qubits are a testbed for the physics of single elementary excitations in superconductors.
We study the transport properties of a hybrid nanostructure composed of a ferromagnet, two quantum dots, and a superconductor connected in series. By using the non-equilibrium Greens function approach, we have calculated the electric current, the differential conductance and the transmittance for energies within the superconductor gap. In this regime, the mechanism of charge transmission is the Andreev reflection, which allows for a control of the current through the ferromagnet polarization. We have also included interdot and intradot interactions, and have analyzed their influence through a mean field approximation. In the presence of interactions, Coulomb blockade tend to localized the electrons at the double-dot system, leading to an asymmetric pattern for the density of states at the dots, and thus reducing the transmission probability through the device. In particular, for non-zero polarization, the intradot interaction splits the spin degeneracy, reducing the maximum value of the current due to different spin-up and spin-down densities of states. Negative differential conductance (NDC) appears for some regions of the voltage bias, as a result of the interplay of the Andreev scattering with electronic correlations. By applying a gate voltage at the dots, one can tune the effect, changing the voltage region where this novel phenomenon appears. This mechanism to control the current may be of importance in technological applications.
comments
Fetching comments Fetching comments
Sign in to be able to follow your search criteria
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا