Do you want to publish a course? Click here

Finite frequency noise of a superconductor/ferromagnet quantum point contact

139   0   0.0 ( 0 )
 Added by Audrey Cottet
 Publication date 2008
  fields Physics
and research's language is English




Ask ChatGPT about the research

We have calculated the finite-frequency current noise of a superconductor-ferromagnet quantum point contact (SF QPC). This signal is qualitatively affected by the spin-dependence of interfacial phase shifts (SDIPS) acquired by electrons upon reflection on the QPC. For a weakly transparent QPC, noise steps appear at frequencies or voltages determined directly by the SDIPS. These steps can occur at experimentally accessible temperatures and frequencies. Finite frequency noise is thus a promising tool to characterize the scattering properties of a SF QPC.



rate research

Read More

Nanostructured superconductor/ferromagnet heterocontacts are studied in the different transport regimes of point-contact spectroscopy. Direct measurements of the nanocontact size by scanning electron microscopy allow a comparison with theoretical models for contact-size estimates of heterocontacts. Our experimental data give evidence that size estimates yield reasonable values for the point-contact diameter $d$ as long as the samples are carefully characterized with respect to the local electronic parameters.
Andreev reflection is a smart tool to investigate the spin polarisation P of the current through point contacts between a superconductor and a ferromagnet. We compare different models to extract P from experimental data and investigate the dependence of P on different contact parameters.
147 - Eva Zakka-Bajjani 2008
We report on direct measurements of the electronic shot noise of a quantum point contact at frequencies nu in the range 4-8 GHz. The very small energy scale used ensures energy independent transmissions of the few transmitted electronic modes and their accurate knowledge. Both the thermal energy and the quantum point contact drain-source voltage Vds are comparable to the photon energy hnu leading to observation of the shot noise suppression when $V_{ds}<h u/e$. Our measurements provide the first complete test of the finite frequency shot noise scattering theory without adjustable parameters.
We calculate the conductance of a ballistic point contact to a superconducting wire, produced by the s-wave proximity effect in a semiconductor with spin-orbit coupling in a parallel magnetic field. The conductance G as a function of contact width or Fermi energy shows plateaus at half-integer multiples of 4e^2/h if the superconductor is in a topologically nontrivial phase. In contrast, the plateaus are at the usual integer multiples in the topologically trivial phase. Disorder destroys all plateaus except the first, which remains precisely quantized, consistent with previous results for a tunnel contact. The advantage of a ballistic contact over a tunnel contact as a probe of the topological phase is the strongly reduced sensitivity to finite voltage or temperature.
We use a superconducting microresonator as a cavity to sense absorption of microwaves by a superconducting quantum point contact defined by surface gates over a proximitized two-dimensional electron gas. Renormalization of the cavity frequency with phase difference across the point contact is consistent with adiabatic coupling to Andreev bound states. Near $pi$ phase difference, we observe random fluctuations in absorption with gate voltage, related to quantum interference-induced modulations in the electron transmission. We identify features consistent with the presence of single Andreev bound states and describe the Andreev-cavity interaction using a dispersive Jaynes-Cummings model. By fitting the weak Andreev-cavity coupling, we extract ~GHz decoherence consistent with charge noise and the transmission dispersion associated with a localized state.
comments
Fetching comments Fetching comments
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا