Do you want to publish a course? Click here

Conformally invariant formalism for the electromagnetic field with currents in Robertson-Walker spaces

135   0   0.0 ( 0 )
 Added by Huguet Eric
 Publication date 2013
  fields Physics
and research's language is English




Ask ChatGPT about the research

We show that the Laplace-Beltrami equation $square_6 a =j$ in $(setR^6,eta)$, $eta := mathrm{diag}(+----+)$, leads under very moderate assumptions to both the Maxwell equations and the conformal Eastwood-Singer gauge condition on conformally flat spaces including the spaces with a Robertson-Walker metric. This result is obtained through a geometric formalism which gives, as byproduct, simplified calculations. In particular, we build an atlas for all the conformally flat spaces considered which allows us to fully exploit the Weyl rescalling to Minkowski space.



rate research

Read More

We build the general conformally invariant linear wave operator for a free, symmetric, second-rank tensor field in a d-dimensional ($dgeqslant 2$) metric manifold, and explicit the special case of maximally symmetric spaces. Under the assumptions made, this conformally invariant wave operator is unique. The corresponding conformally invariant wave equation can be obtained from a Lagrangian which is explicitly given. We discuss how our result compares to previous works, in particular we hope to clarify the situation between conflicting results.
220 - Rong-Gen Cai 2012
In a recent paper [arXiv:1206.4916] by T. Padmanabhan, it was argued that our universe provides an ideal setup to stress the issue that cosmic space is emergent as cosmic time progresses and that the expansion of the universe is due to the difference between the number of degrees of freedom on a holographic surface and the one in the emerged bulk. In this note following this proposal we obtain the Friedmann equation of a higher dimensional Friedmann-Robertson-Walker universe. By properly modifying the volume increase and the number of degrees of freedom on the holographic surface from the entropy formulas of black hole in the Gauss-Bonnet gravity and more general Lovelock gravity, we also get corresponding dynamical equations of the universe in those gravity theories.
223 - M. Ibison 2007
It is shown that only the maximally-symmetric spacetimes can be expressed in both the Robertson-Walker form and in static form - there are no other static forms of the Robertson-Walker spacetimes. All possible static forms of the metric of the maximally-symmetric spacetimes are presented as a table. The findings are generalized to apply to functionally more general spacetimes: it is shown that the maximally symmetric spacetimes are also the only spacetimes that can be written in both orthogonal-time isotropic form and in static form.
241 - Rong-Gen Cai , Li-Ming Cao 2013
By use of the gauge-invariant variables proposed by Kodama and Ishibashi, we obtain the most general perturbation equations in the $(m+n)$-dimensional spacetime with a warped product metric. These equations do not depend on the spectral expansions of the Laplace-type operators on the $n$-dimensional Einstein manifold. These equations enable us to have a complete gauge-invariant perturbation theory and a well-defined spectral expansion for all modes and the gauge invariance is kept for each mode. By studying perturbations of some projections of Weyl tensor in the case of $m=2$, we define three Teukolsky-like gauge-invariant variables and obtain the perturbation equations of these variables by considering perturbations of the Penrose wave equations in the $(2+n)$-dimensional Einstein spectime. In particular, we find the relations between the Teukolsky-like gauge-invariant variables and the Kodama-Ishibashi gauge-invariant variables. These relations imply that the Kodama-Ishibashi gauge-invariant variables all come from the perturbations of Weyl tensor of the spacetime.
The semi classical cosmology approximation for a Friedman Robertson Walker geometry coupled to a field is considered. A power series of the field with coefficients that depend on the radius of the geometry is proposed, and the equations for the coefficients are solved.
comments
Fetching comments Fetching comments
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا