No Arabic abstract
Modern ion accelerators and ion implantation systems need very short, highly versatile, Low Energy Beam Transport (LEBT) systems. The need for reliable and continuous operation requires LEBT designs to be simple and robust. The energy efficiency of available high temperature superconductors (HTS), with efficient and simple cryocooler refrigeration, is an additional attraction. Innovative, compact LEBT systems based on solenoids designed and built with high-temperature superconductor will be developed using computer models and prototyped. The parameters will be chosen to make this type of LEBT useful in a variety of ion accelerators, ion implantation systems, cancer therapy synchrotrons, and research accelerators, including the ORNL SNS. The benefits of solenoids made with HTS will be evaluated with analytical and numerical calculations for a two-solenoid configuration, as will be used in the SNS prototype LEBT that will replace the electrostatic one at SNS, and a single solenoid configuration, as was proposed for the Fermilab proton driver that will be most applicable to ion implantation applications.
The Proton Improvement Plan II (PIP-II) at Fermilab is a program of upgrades to the injection complex. At its core is the design and construction of a CW-compatible, pulsed H- superconducting RF linac. To validate the concept of the front-end of such machine, a test accelerator (a.k.a. PXIE) is under construction. It includes a 10 mA DC, 30 KeV H- ion source, a 2 m-long Low Energy Beam Transport (LEBT), a 2.1 MeV CW RFQ, followed by a Medium Energy Beam Transport (MEBT) that feeds the first of 2 cryomodules increasing the beam energy to ~25 MeV, and a High Energy Beam Transport section (HEBT) that takes the beam to a dump. The ion source and LEBT, which includes 3 solenoids, several clearing electrodes/collimators and a chopping system, have been built, installed, and commissioned to full specification parameters. This report presents the outcome of our commissioning activities, including phase-space measurements at the end of the beam line under various neutralization schemes obtained by changing the electrodes biases and chopper parameters.
In the years 2009-2013 the Large Hadron Collider (LHC) has been operated with the top beam energies of 3.5 TeV and 4 TeV per proton (from 2012) instead of the nominal 7 TeV. The currents in the superconducting magnets were reduced accordingly. To date only seventeen beam-induced quenches have occurred; eight of them during specially designed quench tests, the others during injection. There has not been a single beam- induced quench during normal collider operation with stored beam. The conditions, however, are expected to become much more challenging after the long LHC shutdown. The magnets will be operating at near nominal currents, and in the presence of high energy and high intensity beams with a stored energy of up to 362 MJ per beam. In this paper we summarize our efforts to understand the quench levels of LHC superconducting magnets. We describe beam-loss events and dedicated experiments with beam, as well as the simulation methods used to reproduce the observable signals. The simulated energy deposition in the coils is compared to the quench levels predicted by electro-thermal models, thus allowing to validate and improve the models which are used to set beam-dump thresholds on beam-loss monitors for Run 2.
Accelerators magnets must have minimal magnetic field imperfections for reducing particle-beam instabilities. In the case of coils made of high-temperature superconducting (HTS) tapes, the field imperfections from persistent currents need to be carefully evaluated. In this paper we study the use of superconducting screens based on HTS tapes for reducing the magnetic field imperfections in accelerator magnets. The screens exploit the magnetization by persistent currents to cancel out the magnetic field error. The screens are aligned with the main field components, such that only the undesired field components are compensated. The screens are passive, self-regulating, and do not require any external source of energy. Measurements in liquid nitrogen at 77 Kelvin show for dipole-field configurations a significant reduction of the magnetic-field error up to a factor of four. The residual error is explained via numerical simulations, accounting for the geometrical imperfections in the HTS screens, thus achieving satisfactory agreement with experimental results. Simulations show that if screens are increased in width and thickness, and operated at 4.5 Kelvin, field errors may be eliminated almost entirely for the typical excitation cycles of accelerator magnets.
The PIP2IT test accelerator is under construction at Fermilab. Its ion source and Low Energy Beam Transport (LEBT) in its initial (straight) configuration have been commissioned to full specification parameters. This paper introduces the LEBT design and summarizes the outcome of the commissioning activities.
The ELIMED (MEDical and multidisciplinary application at ELI Beamlines) beam line is being developed at INFN-LNS with the aim of transporting and selecting in energy proton and ion beams accelerated by laser-matter interaction at ELI Beamlines in Prague. It will be a section of the ELIMAIA (ELI Multidisciplinary Applications of laser-Ions Acceleration) beam line, dedicated to applications, including the medical one, of laser-accelerated ion beams [1,2]. A Monte Carlo model has been developed to support the design of the beam line in terms of particle transport efficiency, to optimize the transport parameters at the irradiation point in air and, furthermore, to predict beam parameters in order to deliver dose distributions of clinical relevance. The application has been developed using the Geant4 [3] Monte Carlo toolkit and has been designed in a modular way in order to easily switch on/off geometrical components according to different experimental setups and users requirements, as reported in [4], describing the early-stage code and simulations. The application has been delivered to ELI Beamlines and will be available for future ELIMAIAs users as ready-to-use tool useful during experiment preparation and analysis. The final version of the developed application will be described in detail in this contribution, together with the final results, in terms of energy spectra and transmission efficiency along the in-vacuum beam line, obtained by performing end-to-end simulations.