Do you want to publish a course? Click here

PIP-II Injector Tests Low Energy Beam Transport: Commissioning and Selected Measurements

227   0   0.0 ( 0 )
 Publication date 2017
  fields Physics
and research's language is English




Ask ChatGPT about the research

The PIP2IT test accelerator is under construction at Fermilab. Its ion source and Low Energy Beam Transport (LEBT) in its initial (straight) configuration have been commissioned to full specification parameters. This paper introduces the LEBT design and summarizes the outcome of the commissioning activities.



rate research

Read More

103 - L. Prost , R. Andrews , C. Baffes 2018
The Warm Front End (WFE) of the Proton Improvement Plan II Injector Test at Fermilab has been constructed to its full length. It includes a 15-mA DC, 30-keV H- ion source, a 2 m-long Low Energy Beam Transport (LEBT) with a switching dipole magnet, a 2.1 MeV CW RFQ, followed by a Medium Energy Beam Transport (MEBT) with various diagnostics and a dump. This report presents the commissioning status, focusing on beam measurements in the MEBT. In particular, a beam with the parameters required for injection into the Booster (5 mA, 0.55 ms macro-pulse at 20 Hz) was transported through the WFE.
104 - L. Prost , M. Alvarez , R. Andrews 2015
The Proton Improvement Plan II (PIP-II) at Fermilab is a program of upgrades to the injection complex. At its core is the design and construction of a CW-compatible, pulsed H- superconducting RF linac. To validate the concept of the front-end of such machine, a test accelerator (a.k.a. PXIE) is under construction. It includes a 10 mA DC, 30 KeV H- ion source, a 2 m-long Low Energy Beam Transport (LEBT), a 2.1 MeV CW RFQ, followed by a Medium Energy Beam Transport (MEBT) that feeds the first of 2 cryomodules increasing the beam energy to ~25 MeV, and a High Energy Beam Transport section (HEBT) that takes the beam to a dump. The ion source and LEBT, which includes 3 solenoids, several clearing electrodes/collimators and a chopping system, have been built, installed, and commissioned to full specification parameters. This report presents the outcome of our commissioning activities, including phase-space measurements at the end of the beam line under various neutralization schemes obtained by changing the electrodes biases and chopper parameters.
The SwissFEL Injector Test Facility operated at the Paul Scherrer Institute between 2010 and 2014, serving as a pilot plant and testbed for the development and realization of SwissFEL, the X-ray Free-Electron Laser facility under construction at the same institute. The test facility consisted of a laser-driven rf electron gun followed by an S-band booster linac, a magnetic bunch compression chicane and a diagnostic section including a transverse deflecting rf cavity. It delivered electron bunches of up to 200 pC charge and up to 250 MeV beam energy at a repetition rate of 10 Hz. The measurements performed at the test facility not only demonstrated the beam parameters required to drive the first stage of an FEL facility, but also led to significant advances in instrumentation technologies, beam characterization methods and the generation, transport and compression of ultra-low-emittance beams. We give a comprehensive overview of the commissioning experience of the principal subsystems and the beam physics measurements performed during the operation of the test facility, including the results of the test of an in-vacuum undulator prototype generating radiation in the vacuum ultraviolet and optical range.
A 2.1 MeV, 10 mA CW RFQ has been installed and commissioned at Fermilabs test accelerator known as PIP-II Injector Test. This report describes the measurements of the beam properties after acceleration in the RFQ, including the energy and emittance.
A CW-compatible, pulsed H- superconducting linac PIP-II is being planned to upgrade Fermilabs injection complex. To validate the front-end concept, a test accelerator (The PIP-II Injector Test, formerly known as PXIE) is under construction. The warm part of this accelerator comprises a 10 mA DC, 30 keV H- ion source, a 2 m-long Low Energy Beam Transport (LEBT), a 2.1 MeV Radio Frequency Quadrupole (RFQ) capable of operation in Continuous Wave (CW) mode, and a 10 m-long Medium Energy Beam Transport (MEBT). The paper will report on the installation of the RFQ and the first sections of the MEBT and related mechanical design considerations.
comments
Fetching comments Fetching comments
Sign in to be able to follow your search criteria
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا