Do you want to publish a course? Click here

High-Precision Measurement of Rydberg State Hyperfine Splitting in a Room-Temperature Vapour Cell

117   0   0.0 ( 0 )
 Added by Atreju Tauschinsky
 Publication date 2013
  fields Physics
and research's language is English




Ask ChatGPT about the research

We present direct measurements of the hyperfine splitting of Rydberg states in rubidium 87 using Electromagnetically Induced Transparency (EIT) spectroscopy in a room-temperature vapour cell. With this method, and in spite of Doppler-broadening, line-widths of 3.7 MHz FWHM, i.e. significantly below the intermediate state natural linewidth are reached. This allows resolving hyperfine splittings for Rydberg s-states with n=20...24. With this method we are able to determine Rydberg state hyperfine splittings with an accuracy of approximately 100 kHz. Ultimately our method allows accuracies of order 5 kHz to be reached. Furthermore we present a direct measurement of hyperfine-resolved Rydberg state Stark-shifts. These results will be of great value for future experiments relying on excellent knowledge of Rydberg-state energies and



rate research

Read More

111 - Y.Sasaki , A.Miyazaki , A.Ishida 2010
Interference between different energy eigenstates in a quantum system results in an oscillation with a frequency which is proportional to the difference in energy between the states. Such an oscillation is observable in polarized positronium when it is placed in a magnetic field. In order to measure the hyperfine splitting of positronium, we perform the precise measurement of this oscillation using a high quality superconducting magnet and fast photon-detectors. A result of $203.324 pm 0.039rm{~(stat.)} pm 0.015rm{(~sys.)}$~GHz is obtained which is consistent with both theoretical calculations and previous precise measurements.
110 - A. Mooser , S. Ulmer , K. Blaum 2014
The spin-magnetic moment of the proton $mu_p$ is a fundamental property of this particle. So far $mu_p$ has only been measured indirectly, analysing the spectrum of an atomic hydrogen maser in a magnetic field. Here, we report the direct high-precision measurement of the magnetic moment of a single proton using the double Penning-trap technique. We drive proton-spin quantum jumps by a magnetic radio-frequency field in a Penning trap with a homogeneous magnetic field. The induced spin-transitions are detected in a second trap with a strong superimposed magnetic inhomogeneity. This enables the measurement of the spin-flip probability as a function of the drive frequency. In each measurement the protons cyclotron frequency is used to determine the magnetic field of the trap. From the normalized resonance curve, we extract the particles magnetic moment in units of the nuclear magneton $mu_p=2.792847350(9)mu_N$. This measurement outperforms previous Penning trap measurements in terms of precision by a factor of about 760. It improves the precision of the forty year old indirect measurement, in which significant theoretical bound state corrections were required to obtain $mu_p$, by a factor of 3. By application of this method to the antiproton magnetic moment $mu_{bar{p}}$ the fractional precision of the recently reported value can be improved by a factor of at least 1000. Combined with the present result, this will provide a stringent test of matter/antimatter symmetry with baryons.
We report an experimental measurement of a light wavelength at which the ac electric polarizability equals zero for 87Rb atoms in the F=2 ground hyperfine state. The experiment uses a condensate interferometer both to find this tune-out wavelength and to accurately determine the light polarization for it. The wavelength lies between the D1 and D2 spectral lines at 790.03235(3) nm. The measurement is sensitive to the tensor contribution to the polarizability, which has been removed so that the reported value is the zero of the scalar polarizability. The precision is fifty times better than previous tune-out wavelength measurements. Our result can be used to determine the ratio of matrix elements |<5P3/2||d||5S1/2>/<5P1/2||d||5S1/2>|^2 = 1.99219(3), a 100-fold improvement over previous experimental values. Both the tune-out wavelength and matrix element ratio are consistent with theoretical calculations, with uncertainty estimates for the theory about an order of magnitude larger than the experimental precision.
Antihydrogen, the lightest atom consisting purely of antimatter, is an ideal laboratory to study the CPT symmetry by comparison to hydrogen. With respect to absolute precision, transitions within the ground-state hyperfine structure (GS-HFS) are most appealing by virtue of their small energy separation. ASACUSA proposed employing a beam of cold antihydrogen atoms in a Rabi-type experiment to determine the GS-HFS in a field-free region. Here we present a measurement of the zero-field hydrogen GS-HFS using the spectroscopy apparatus of ASACUSAs antihydrogen experiment. The measured value of $ u_mathrm{HF}$=$1~420~405~748.4(3.4)(1.6)~textrm{Hz}$ with a relative precision of $Delta$$ u_mathrm{HF}$/$ u_mathrm{HF}$=$2.7times10^{-9}$ constitutes the most precise determination of this quantity in a beam and verifies the developed spectroscopy methods for the antihydrogen HFS experiment to the ppb level. Together with the recently presented observation of antihydrogen atoms $2.7~textrm{m}$ downstream of the production region, the prerequisites for a measurement with antihydrogen are now available within the ASACUSA collaboration.
283 - A. Ishida , Y. Sasaki , G. Akimoto 2011
Positronium is an ideal system for the research of the quantum electrodynamics (QED) in bound state. The hyperfine splitting (HFS) of positronium, $Delta_{mathrm{HFS}}$, gives a good test of the bound state calculations and probes new physics beyond the Standard Model. A new method of QED calculations has revealed the discrepancy by 15,ppm (3.9$sigma$) of $Delta_{mathrm{HFS}}$ between the QED prediction and the experimental average. There would be possibility of new physics or common systematic uncertainties in the previous all experiments. We describe a new experiment to reduce possible systematic uncertainties and will provide an independent check of the discrepancy. We are now taking data and the current result of $Delta_{mathrm{HFS}} = 203.395,1 pm 0.002,4 (mathrm{stat.}, 12,mathrm{ppm}) pm 0.001,9 (mathrm{sys.}, 9.5,mathrm{ppm}),mathrm{GHz} $ has been obtained so far. A measurement with a precision of $O$(ppm) is expected within a year.
comments
Fetching comments Fetching comments
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا