Do you want to publish a course? Click here

Searching for Charged Higgs Boson in Polarized Top Quark

143   0   0.0 ( 0 )
 Added by Xia Wan Dr.
 Publication date 2013
  fields
and research's language is English




Ask ChatGPT about the research

The charged Higgs boson is quite common in many new physics models. In this study we examine the potential of observing a heavy charged Higgs boson in its decay mode of top-quark and bottom-quark in the Type-II Two-Higgs-Doublet-Model. In this model, the chirality structure of the coupling of charged Higgs boson to the top- and bottom-quark is very sensitive to the value of $tanbeta$. As the polarization of the top-quark can be measured experimentally from the top-quark decay products, one could make use of the top-quark polarization to determine the value of $tanbeta$. We preform a detailed analysis of measuring top-quark polarization in the production channels $gbto tH^-$ and $gbar{b}to bar{t}H^+$. We calculate the helicity amplitudes of the charged Higgs boson production and decay.Our calculation shows that the top-quark from the charged Higgs boson decay provides a good probe for measuring $tanbeta$, especially for the intermediate $tanbeta$ region. On the contrary, the top-quark produced in association with the charged Higgs boson cannot be used to measure $tanbeta$ because its polarization is highly contaminated by the $t$-channel kinematics.



rate research

Read More

We discuss the calculation of charged Higgs boson production in association with top quark in the MC@NLO framework for combining NLO matrix elements with a parton shower. The process is defined in a model independent manner for wide applicability, and can be used if the charged Higgs boson mass is either greater or less than the mass of the top quark. For the latter mass region, care is needed in defining the charged Higgs production mode due to interference with top pair production. We give a suitable definition applicable in an NLO (plus parton shower) context, and present example results for the LHC.
142 - Xue Gong , Zong-Guo Si , Shuo Yang 2012
We study the charged Higgs production at LHC via its associated production with top quark. The kinematic cuts are optimized to suppress the background processes so that the reconstruction of the charged Higgs and top quark is possible. The angular distributions with respect to top quark spin are explored to study the $Htb$ interaction at LHC.
80 - I. Turk Cakir 2020
After the recent discovery of a neutral Higgs boson with a mass about 125 GeV, we assess the extend of discovery potential of future circular hadron collider (FCC-hh) for a charged Higgs boson in the bottom and top quark decay channel. The charged Higgs boson can be produced through the pp->h^{-}t+X process with a subsequent decay h^{-}->b bar{t} channel. This decay channel is particularly important for studying the charged Higgs boson heavier than the top quark. We consider an extension of the standard model Higgs sector, namely two Higgs doublet model (2HDM), and perform a dedicated signal significance analysis to test this channel for the FCC-hh running at the center of mass energy of 100 TeV and the integrated luminosity of 1 ab^{-1} (initial) and 30 ab^{-1} (ultimate). We find that an important part of the parameter spaces of two Higgs doublet model are examinable at the FCC-hh.
One way to probe new physics beyond standard model is to check the correlation among higher dimension operators in effective field theory. We examine the strong correlation between the processes of $pprightarrow tHq$ and $pprightarrow tq$ which both depend on the same three operators. The correlation indicates that, according to the data of $pprightarrow tq$, $sigma_{tHq}=big[106.8 pm 64.8big]~{rm fb}$ which is far below the current upper limit $sigma_{tHq}leq 900~{rm fb}$.
The Higgs boson is produced at the LHC through gluon fusion at roughly the Standard Model rate. New colored fermions, which can contribute to $ggrightarrow h$, must have vector-like interactions in order not to be in conflict with the experimentally measured rate. We examine the size of the corrections to single and double Higgs production from heavy vector-like fermions in $SU(2)_L$ singlets and doublets and search for regions of parameter space where double Higgs production is enhanced relative to the Standard Model prediction. We compare production rates and distributions for double Higgs production from gluon fusion using an exact calculation, the low energy theorem (LET), where the top quark and the heavy vector-like fermions are taken to be infinitely massive, and an effective theory (EFT) where top mass effects are included exactly and the effects of the heavy fermions are included to ${cal O}(1/M^2_X)$. Unlike the LET, the EFT gives an extremely accurate description of the kinematic distributions for double Higgs production.
comments
Fetching comments Fetching comments
Sign in to be able to follow your search criteria
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا