Do you want to publish a course? Click here

The rise of an ionized wind in the Narrow Line Seyfert 1 Galaxy Mrk 335 observed by XMM-Newton and HST

323   0   0.0 ( 0 )
 Added by Anna Lia Longinotti
 Publication date 2013
  fields Physics
and research's language is English




Ask ChatGPT about the research

We present the discovery of an outflowing ionized wind in the Seyfert 1 Galaxy Mrk 335. Despite having been extensively observed by most of the largest X-ray observatories in the last decade, this bright source was not known to host warm absorber gas until recent XMM-Newton observations in combination with a long-term Swift monitoring program have shown extreme flux and spectral variability. High resolution spectra obtained by the XMM-Newton RGS detector reveal that the wind consists of three distinct ionization components, all outflowing at a velocity of 5000 km/s. This wind is clearly revealed when the source is observed at an intermediate flux state (2-5e-12 ergs cm^-2 s^-1). The analysis of multi-epoch RGS spectra allowed us to compare the absorber properties at three very different flux states of the source. No correlation between the warm absorber variability and the X-ray flux has been determined. The two higher ionization components of the gas may be consistent with photoionization equilibrium, but we can exclude this for the only ionization component that is consistently present in all flux states (log(xi)~1.8). We have included archival, non-simultaneous UV data from HST (FOS, STIS, COS) with the aim of searching for any signature of absorption in this source that so far was known for being absorption-free in the UV band. In the COS spectra obtained a few months after the X-ray observations we found broad absorption in CIV lines intrinsic to the AGN and blueshifted by a velocity roughly comparable to the X-ray outflow. The global behavior of the gas in both bands can be explained by variation of the covering factor and/or column density, possibly due to transverse motion of absorbing clouds moving out of the line of sight at Broad Line Region scale.



rate research

Read More

The Seyfert Galaxy Mrk 335 is known for its frequent changes of flux and spectral shape in the X-ray band occurred during recent years. These variations may be explained by the onset of a wind that previous, non-contemporaneous high-resolution spectroscopy in X-ray and UV bands located at accretion disc scale. A simultaneous new campaign by XMM-Newton and HST caught the source at an historical low flux in the X-ray band. The soft X-ray spectrum is dominated by prominent emission features, and by the effect of a strong ionized absorber with an outflow velocity of 5-6X10$^3$~km~s$^{-1}$. The broadband spectrum obtained by the EPIC-pn camera reveals the presence of an additional layer of absorption by gas at moderate ionization covering 80% of the central source, and tantalizing evidence for absorption in the Fe~K band outflowing at the same velocity of the soft X-ray absorber. The HST-COS spectra confirm the simultaneous presence of broad absorption troughs in CIV, Ly alpha, Ly beta and OVI, with velocities of the order of 5000 km~s$^{-1}$ and covering factors in the range of 20-30%. Comparison of the ionic column densities and of other outflow parameters in the two bands show that the X-ray and UV absorbers are likely originated by the same gas. The resulting picture from this latest multi-wavelength campaign confirms that Mrk 335 undergoes the effect of a patchy, medium-velocity outflowing gas in a wide range of ionization states that seem to be persistently obscuring the nuclear continuum.
We report the discovery of strong soft X-ray emission lines and a hard continuum above 2 keV in the Narrow-Line Seyfert 1 galaxy Mrk 335 during an extremely low X-ray flux state. Mrk 335 was observed for 22 ks by XMM-Newton in July 2007 as a Target of Opportunity to examine it in its X-ray low-flux state, which was discovered with Swift. Long-term light curves suggest that this is the lowest flux state this AGN has ever been seen in. However, Mrk 335 is still sufficiently bright that its X-ray properties can be studied in detail. The X-ray continuum spectrum is very complex and requires several components to model. Statistically, partial covering and blurred reflection models work well. We confirm the presence of a strong narrow Fe line at 6.4 keV. High-resolution spectroscopy with the XMM-RGS reveals strong, soft X-ray emission lines not detected in previous, higher signal-to-noise, XMM-Newton observations, such as: highly ionized Fe lines, O VII, Ne IX and Mg XI lines. The optical/UV fluxes are similar to those previously measured with Swift. Optical spectroscopy taken in 2007 September do not show any changes to optical spectra obtained 8 years earlier.
92 - P. T. OBrien 2001
We present XMM-Newton observations of Mrk 359, the first Narrow Line Seyfert 1 galaxy discovered. Even among NLS1s, Mrk 359 is an extreme case with extraordinarily narrow optical emission lines. The XMM-Newton data show that Mrk 359 has a significant soft X-ray excess which displays only weak absorption and emission features. The (2-10) keV continuum, including reflection, is flatter than the typical NLS1, with Gamma approximately 1.84. A strong emission line of equivalent width approximately 200 eV is also observed, centred near 6.4 keV. We fit this emission with two line components of approximately equal strength: a broad iron-line from an accretion disc and a narrow, unresolved core. The unresolved line core has an equivalent width of approximately 120 eV and is consistent with fluorescence from neutral iron in distant reprocessing gas, possibly in the form of a `molecular torus. Comparison of the narrow-line strengths in Mrk 359 and other low-moderate luminosity Seyfert 1 galaxies with those in QSOs suggests that the solid angle subtended by the distant reprocessing gas decreases with increasing AGN luminosity.
We present results from the spectral analysis of a long XMM-Newton observation of the radio-loud NLS1 galaxy PKS0558-504. The source is highly variable, on all sampled time scales. We did not observe any absorption features in either the soft or hard X-ray band. We found weak evidence for the presence of an iron line at ~6.8 keV, which is indicative of emission from highly ionized iron. The 2-10 keV band spectrum is well fitted by a simple power law model, whose slope steepens with increasing flux, similar to what is observed in other Seyferts as well. The soft excess is variable both in flux and shape, and it can be well described by a low-temperature Comptonisation model, whose slope flattens with increasing flux. The soft excess flux variations are moderately correlated with the hard band variations, and we found weak evidence that they are leading them by ~20 ksec. Our results rule out a jet origin for the bulk of the X-ray emission in this object. The observed hard band spectral variations suggest intrinsic continuum slope variations, caused by changes in the heating/cooling ratio of the hot corona. The low-temperature Comptonising medium, responsible for the soft excess emission, could be a hot layer in the inner disc of the source, which appears due to the fact that the source is accreting at a super-Eddington rate. The soft excess flux and spectral variations could be caused by random variations of the accretion rate.
We present a detailed analysis of XMM-Newton X-ray spectra of the Narrow-Line Seyfert 1 galaxy Mrk 1044. We find robust evidence for a multi-phase, ultra-fast outflow, traced by four separate components in the grating spectrum. One component has high column density and ionization state, and is outflowing at 0.15c. The other three wind components have lower temperature, lower column density, and have outflow velocities 0.08c. This wind structure is strikingly similar to that found in IRAS 17020+4544, suggesting that stratified winds may be a common feature of ultra-fast outflows. Such structure is likely produced by fluid instabilities that form when the nuclear wind shocks the ambient medium. We show that in an energy-driven wind scenario, the wind in Mrk 1044 might carry enough energy to produce significant feedback on its host galaxy. We further discuss the implications of the presence of a fast wind in yet another NLS1 galaxy with high Eddington ratio.
comments
Fetching comments Fetching comments
Sign in to be able to follow your search criteria
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا