Do you want to publish a course? Click here

EFIT tokamak equilibria with toroidal flow and anisotropic pressure using the two-temperature guiding-centre plasma

222   0   0.0 ( 0 )
 Added by Michael Fitzgerald
 Publication date 2013
  fields Physics
and research's language is English




Ask ChatGPT about the research

A new force balance model for the EFIT magnetohydrodynamic equilibrium technique for tokamaks is presented which includes the full toroidal flow and anisotropy changes to the Grad-Shafranov equation. The free functions are poloidal flux functions and all non-linear contributions to the toroidal current density are treated iteratively. The parallel heat flow approximation chosen for the model is that parallel temperature is a flux function and that both parallel and perpendicular pressures may be described using parallel and perpendicular temperatures. This choice for the fluid thermodynamics has been shown elsewhere to be the same as a guiding centre kinetic solution of the same problem under the same assumptions. The model reduces identically to the static and isotropic Grad-Shafranov equation in the appropriate limit as different flux functions are set to zero. An analytical solution based on a modified Soloviev solution for non-zero toroidal flow and anisotropy is also presented. The force balance model has been demonstrated in the code EFIT TENSOR, a branch of the existing code EFIT++. Benchmark results for EFIT TENSOR are presented and the more complicated force balance model is found to converge to force balance similarly to the usual EFIT model and with comparable speed.



rate research

Read More

Neutral beam injection or ion cyclotron resonance heating induces pressure anisotropy. The axisymmetric plasma equilibrium code HELENA has been upgraded to include anisotropy and toroidal flow. With both analytical and numerical methods, we have studied the determinant factors in anisotropic equilibria and their impact on flux surfaces, magnetic axis shift, the displacement of pressures and density contours from flux surface. With $p_parallel/p_perp approx 1.5$, $p_perp$ can vary 20% on $s=0.5$ flux surface, in a MAST like equilibrium. We have also re-evaluated the widely applied approximation to anisotropy in which $p^*=(p_parallel + p_perp)/2$, the average of parallel and perpendicular pressure, is taken as the approximate isotropic pressure. We find the reconstructions of the same MAST discharge with $p_parallel/p_perp approx 1.25$, using isotropic and anisotropic model respectively, to have a 3% difference in toroidal field but a 66% difference in poloidal current.
Uncertainties and errors in magnetic equilibrium reconstructions are a wide-spread problem in interpreting experimental data measured in the tokamak edge. This study demonstrates errors in EFIT++ reconstructions performed on the COMPASS tokamak by comparing the outer midplane separatrix position to the Velocity Shear Layer (VSL) position. The VSL is detected as the plasma potential peak measured by a reciprocating ball-pen probe. A subsequent statistical analysis of nearly 400 discharges shows a strong systematic trend in the reconstructed separatrix position relative to the VSL, where the primary factors are plasma triangularity and the magnetic axis radial position. This dependency is significantly reduced after the measuring coils positions as recorded in EFIT input are optimised to provide a closer match between the synthetic coil signal calculated by the Biot-Savart law in a vacuum discharge and the actual coil signal. In conclusion, we suggest that applying this optimisation may lead to more accurate and reliable reconstructions of the COMPASS equilibrium, which would have a positive impact on the accuracy of measurement analysis performed in the edge plasma.
Extending the ideal MHD stability code MISHKA, a new code, MISHKA-A, is developed to study the impact of pressure anisotropy on plasma stability. Based on full anisotropic equilibrium and geometry, the code can provide normal mode analysis with three fluid closure models: the single adiabatic model (SA), the double adiabatic model (CGL) and the incompressible model. A study on the plasma continuous spectrum shows that in low beta, large aspect ratio plasma, the main impact of anisotropy lies in the modification of the BAE gap and the sound frequency, if the q profile is conserved. The SA model preserves the BAE gap structure as ideal MHD, while in CGL the lowest frequency branch does not touch zero frequency at the resonant flux surface where $m+nq=0$, inducing a gap at very low frequency. Also, the BAE gap frequency with bi-Maxwellian distribution in both model becomes higher if $p_perp > p_parallel$ with a q profile dependency. As a benchmark of the code, we study the m/n=1/1 internal kink mode. Numerical calculation of the marginal stability boundary with bi-Maxwellian distribution shows a good agreement with the generalized incompressible Bussac criterion [A. B. Mikhailovskii, Sov. J. Plasma Phys 9, 190 (1983)]: the mode is stabilized(destabilized) if $p_parallel < p_perp (p_parallel > p_perp)$.
A detailed understanding of island seeding is crucial to avoid (N)TMs and their negative consequences like confinement degradation and disruptions. In the present work, we investigate the growth of 2/1 islands in response to magnetic perturbations. Although we use externally applied perturbations produced by resonant magnetic perturbation (RMP) coils for this study, results are directly transferable to island seeding by other MHD instabilities creating a resonant magnetic field component at the rational surface. Experimental results for 2/1 island penetration from ASDEX Upgrade are presented extending previous studies. Simulations are based on an ASDEX Upgrade L-mode discharge with low collisionality and active RMP coils. Our numerical studies are performed with the 3D, two fluid, non-linear MHD code JOREK. All three phases of mode seeding observed in the experiment are also seen in the simulations: first a weak response phase characterized by large perpendicular electron flow velocities followed by a fast growth of the magnetic island size accompanied by a reduction of the perpendicular electron velocity, and finally the saturation to a fully formed island state with perpendicular electron velocity close to zero. Thresholds for mode penetration are observed in the plasma rotation as well as in the RMP coil current. A hysteresis of the island size and electron perpendicular velocity is observed between the ramping up and down of the RMP amplitude consistent with an analytically predicted bifurcation. The transition from dominant kink/bending to tearing parity during the penetration is investigated.
Recent tokamak experiments employing off-axis, non-inductive current drive have found that a large central current hole can be produced. The current density is measured to be approximately zero in this region, though in principle there was sufficient current drive power for the central current density to have gone significantly negative. Recent papers have used a large aspect-ratio expansion to show that normal MHD equilibria (with axisymmetric nested flux surfaces, non-singular fields, and monotonic peaked pressure profiles) can not exist with negative central current. We extend that proof here to arbitrary aspect ratio, using a variant of the virial theorem to derive a relatively simple integral constraint on the equilibrium. However, this constraint does not, by itself, exclude equilibria with non-nested flux surfaces, or equilibria with singular fields and/or hollow pressure profiles that may be spontaneously generated.
comments
Fetching comments Fetching comments
Sign in to be able to follow your search criteria
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا