No Arabic abstract
We report the realization of field-effect transistors (FETs) made with chemically synthesized multilayer 2D crystal semiconductor MoS2. Electrical properties such as the FET mobility, subthreshold swing, on/off ratio, and contact resistance of chemically synthesized (s-) MoS2 are indistinguishable from that of mechanically exfoliated (x-) MoS2, however flat-band voltages are different, possibly due to polar chemical residues originating in the transfer process. Electron diffraction studies and Raman spectroscopy show the structural similarity of s-MoS2 to x-MoS2. This initial report on the behavior and properties of s-MoS2 illustrates the feasibility of electronic devices using synthetic layered 2D crystal semiconductors.
We report on the fabrication and characterization of synthesized multiwall MoS2 nanotube (NT) and nanoribbon (NR) field-effect transistors (FETs). The MoS2 NTs and NRs were grown by chemical transport, using iodine as a transport agent. Raman spectroscopy confirms the material as unambiguously MoS2 in NT, NR, and flake forms. Transmission electron microscopy was used to observe cross sections of the devices after electrical measurements and these were used in the interpretation of the electrical measurements allowing estimation of the current density. The NT and NR FETs demonstrate n-type behavior, with ON/OFF current ratios exceeding 10^3, and with current densities of 1.02 {mu}A/{mu}m, and 0.79 {mu}A/{mu}m at VDS = 0.3 V and VBG = 1 V, respectively. Photocurrent measurements conducted on a MoS2 NT FET, revealed short-circuit photocurrent of tens of nanoamps under an excitation optical power of 78 {mu}W and 488 nm wavelength, which corresponds to a responsivity of 460 {mu}A/W. A long channel transistor model was used to model the common-source characteristics of MoS2 NT and NR FETs and was shown to be consistent with the measured data.
With the motivation of improving the performance and reliability of aggressively scaled nano-patterned graphene field-effect transistors, we present the first systematic experimental study on charge and current distribution in multilayer graphene field-effect transistors. We find a very particular thickness dependence for Ion, Ioff, and the Ion/Ioff ratio, and propose a resistor network model including screening and interlayer coupling to explain the experimental findings. In particular, our model does not invoke modification of the linear energy-band structure of graphene for the multilayer case. Noise reduction in nano-scale few-layer graphene transistors is experimentally demonstrated and can be understood within this model as well.
Monolayer transition metal dichalcogenides (TMD) have numerous potential applications in ultrathin electronics and photonics. The exposure of TMD based devices to light generates photo-carriers resulting in an enhanced conductivity, which can be effectively used, e.g., in photodetectors. If the photo-enhanced conductivity persists after removal of the irradiation, the effect is known as persistent photoconductivity (PPC). Here we show that ultraviolet light (wavelength = 365 nm) exposure induces an extremely long-living giant PPC (GPPC) in monolayer MoS2 (ML-MoS2) field-effect transistors (FET) with a time constant of ~30 days. Furthermore, this effect leads to a large enhancement of the conductivity up to a factor of 107. In contrast to previous studies in which the origin of the PPC was attributed to extrinsic reasons such as trapped charges in the substrate or adsorbates, we unambiguously show that the GPPC arises mainly from the intrinsic properties of ML-MoS2 such as lattice defects that induce a large amount of localized states in the forbidden gap. This finding is supported by a detailed experimental and theoretical study of the electric transport in TMD based FETs as well as by characterization of ML-MoS2 with scanning tunneling spectroscopy, high-resolution transmission electron microscopy, and photoluminescence measurements. The obtained results provide a basis towards the defect-based engineering of the electronic and optical properties of TMDs for device applications.
We report the realization of field-effect transistors (FETs) made with chemically- synthesized layered two dimensional (2D) crystal semiconductor WS2. The 2D Schottky-barrier FETs demonstrate ambipolar behavior and a high (~105x) on/off current ratio at room temperature with current saturation. The behavior is attributed to the presence of an energy bandgap in the 2D crystal material. The FETs show clear photo response to visible light. The promising electronic and optical characteristics of the devices combined with the layered 2D crystal flexibility make WS2 attractive for future electronic and optical devices.
We report on the transport and low-frequency noise measurements of MoS2 thin-film transistors with thin (2-3 atomic layers) and thick (15-18 atomic layers) channels. The back-gated transistors made with the relatively thick MoS2 channels have advantages of the higher electron mobility and lower noise level. The normalized noise spectral density of the low-frequency 1/f noise in thick MoS2 transistors is of the same level as that in graphene. The MoS2 transistors with the atomically thin channels have substantially higher noise levels. It was established that, unlike in graphene devices, the noise characteristics of MoS2 transistors with thick channels (15-18 atomic planes) could be described by the McWhorter model. Our results indicate that the channel thickness optimization is crucial for practical applications of MoS2 thin-film transistors.