Do you want to publish a course? Click here

Where the active galaxies live: a panchromatic view of radio-AGN in the AKARI-NEP field

255   0   0.0 ( 0 )
 Added by Marios Karouzos
 Publication date 2013
  fields Physics
and research's language is English




Ask ChatGPT about the research

We study the host galaxy properties of radio sources in the AKARI-North Ecliptic Pole (NEP) field, using an ensemble of multi-wavelength datasets. We identify both radio-loud and radio-quiet AGN and study their host galaxy properties by means of SED fitting. We investigate the relative importance of nuclear and star-formation activity in radio-AGN and assess the role of radio-AGN as efficient quenchers of star-formation in their host galaxies.



rate research

Read More

211 - Marios Karouzos , Myungshin Im , 2013
Radio-loud active galaxies have been found to exhibit a close connection to galactic mergers and host galaxy star-formation quenching. We present preliminary results of an optical spectroscopic investigation of the AKARI NEP field. We focus on the population of radio-loud AGN and use photometric and spectroscopic information to study both their star-formation and nuclear activity components. Preliminary results show that radio-AGN are associated with early type, massive galaxies with relatively old stellar populations.
Context. The North Ecliptic Pole (NEP) field provides a unique set of panchromatic data, well suited for active galactic nuclei (AGN) studies. Selection of AGN candidates is often based on mid-infrared (MIR) measurements. Such method, despite its effectiveness, strongly reduces a catalog volume due to the MIR detection condition. Modern machine learning techniques can solve this problem by finding similar selection criteria using only optical and near-infrared (NIR) data. Aims. Aims of this work were to create a reliable AGN candidates catalog from the NEP field using a combination of optical SUBARU/HSC and NIR AKARI/IRC data and, consequently, to develop an efficient alternative for the MIR-based AKARI/IRC selection technique. Methods. A set of supervised machine learning algorithms was tested in order to perform an efficient AGN selection. Best of the models were formed into a majority voting scheme, which used the most popular classification result to produce the final AGN catalog. Additional analysis of catalog properties was performed in form of the spectral energy distribution (SED) fitting via the CIGALE software. Results. The obtained catalog of 465 AGN candidates (out of 33 119 objects) is characterized by 73% purity and 64% completeness. This new classification shows consistency with the MIR-based selection. Moreover, 76% of the obtained catalog can be found only with the new method due to the lack of MIR detection for most of the new AGN candidates. Training data, codes and final catalog are available via the github repository. Final AGN candidates catalog will be also available via the CDS service after publication.
The aim of this work is to create a new catalog of reliable AGN candidates selected from the AKARI NEP-Deep field. Selection of the AGN candidates was done by applying a fuzzy SVM algorithm, which allows to incorporate measurement uncertainties into the classification process. The training dataset was based on the spectroscopic data available for selected objects in the NEP-Deep and NEP-Wide fields. The generalization sample was based on the AKARI NEP-Deep field data including objects without optical counterparts and making use of the infrared information only. A high quality catalog of previously unclassified 275 AGN candidates was prepared.
We present the mid-infrared (MIR) properties of galaxies within a supercluster in the North Ecliptic Pole region at z?0.087 observed with the AKARI satellite. We use data from the AKARI NEP-Wide (5.4 deg2) IR survey and the CLusters of galaxies EVoLution studies (CLEVL) mission program. We show that near-IR (3 {mu}m)-mid- IR (11 {mu}m) color can be used as an indicator of the specific star formation rate and the presence of intermediate age stellar populations. From the MIR observations, we find that red-sequence galaxies consist not only of passively evolving red early-type galaxies, but also of 1) weak-SFG (disk-dominated star-forming galaxies which have star formation rates lower by sim 4 times than blue-cloud galaxies), and 2) intermediate- MXG (bulge-dominated galaxies showing stronger MIR dust emission than normal red early-type galaxies). Those two populations can be a set of transition galaxies from blue, star-forming, late-type galaxies evolving into red, quiescent, early-type ones. We find that the weak-SFG are predominant at intermediate masses (1010Modot < Mstar < 1010.5Modot) and are typically found in local densities similar to the outskirts of galaxy clusters. As much as 40% of the supercluster member galaxies in this mass range can be classified as weak-SFGs, but their proportion decreases to < 10% at larger masses (Mstar > 1010.5 Modot) at any galaxy density. The fraction of the intermediate-MXG among red- sequence galaxies at 1010Modot < Mstar < 1011Modot also decreases as the density and mass increase. In particular, sim42% of the red-sequence galaxies with early-type morphologies are classified as intermediate-MXG at intermediate densities. These results suggest that the star formation activity is strongly dependent on the stellar mass, but that the morphological transformation is mainly controlled by the environment.
We present a method of selection of 24~$mu$m galaxies from the AKARI North Ecliptic Pole (NEP) Deep Field down to $150 mbox{ }mu$Jy and measurements of their two-point correlation function. We aim to associate various 24 $mu$m selected galaxy populations with present day galaxies and to investigate the impact of their environment on the direction of their subsequent evolution. We discuss using of Support Vector Machines (SVM) algorithm applied to infrared photometric data to perform star-galaxy separation, in which we achieve an accuracy higher than 80%. The photometric redshift information, obtained through the CIGALE code, is used to explore the redshift dependence of the correlation function parameter ($r_{0}$) as well as the linear bias evolution. This parameter relates galaxy distribution to the one of the underlying dark matter. We connect the investigated sources to their potential local descendants through a simplified model of the clustering evolution without interactions. We observe two different populations of star-forming galaxies, at $z_{med}sim 0.25$, $z_{med}sim 0.9$. Measurements of total infrared luminosities ($L_{TIR}$) show that the sample at $z_{med}sim 0.25$ is composed mostly of local star-forming galaxies, while the sample at $z_{med}sim0.9$ is composed of luminous infrared galaxies (LIRGs) with $L_{TIR}sim 10^{11.62}L_{odot}$. We find that dark halo mass is not necessarily correlated with the $L_{TIR}$: for subsamples with $L_{TIR}= 10^{11.15} L_{odot}$ at $z_{med}sim 0.7$ we observe a higher clustering length ($r_{0}=6.21pm0.78$ $[h^{-1} mbox{Mpc}]$) than for a subsample with mean $L_{TIR}=10^{11.84} L_{odot}$ at $z_{med}sim1.1$ ($r_{0}=5.86pm0.69$ $h^{-1} mbox{Mpc}$). We find that galaxies at $z_{med}sim 0.9$ can be ancestors of present day $L_{*}$ early type galaxies, which exhibit a very high $r_{0}sim 8$~$h^{-1} mbox{Mpc}$.
comments
Fetching comments Fetching comments
Sign in to be able to follow your search criteria
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا