Do you want to publish a course? Click here

AKARI Observation of the North Ecliptic Pole (NEP) Supercluster at z = 0.087: mid-infrared view of transition galaxies

98   0   0.0 ( 0 )
 Added by Jongwan Ko
 Publication date 2011
  fields Physics
and research's language is English




Ask ChatGPT about the research

We present the mid-infrared (MIR) properties of galaxies within a supercluster in the North Ecliptic Pole region at z?0.087 observed with the AKARI satellite. We use data from the AKARI NEP-Wide (5.4 deg2) IR survey and the CLusters of galaxies EVoLution studies (CLEVL) mission program. We show that near-IR (3 {mu}m)-mid- IR (11 {mu}m) color can be used as an indicator of the specific star formation rate and the presence of intermediate age stellar populations. From the MIR observations, we find that red-sequence galaxies consist not only of passively evolving red early-type galaxies, but also of 1) weak-SFG (disk-dominated star-forming galaxies which have star formation rates lower by sim 4 times than blue-cloud galaxies), and 2) intermediate- MXG (bulge-dominated galaxies showing stronger MIR dust emission than normal red early-type galaxies). Those two populations can be a set of transition galaxies from blue, star-forming, late-type galaxies evolving into red, quiescent, early-type ones. We find that the weak-SFG are predominant at intermediate masses (1010Modot < Mstar < 1010.5Modot) and are typically found in local densities similar to the outskirts of galaxy clusters. As much as 40% of the supercluster member galaxies in this mass range can be classified as weak-SFGs, but their proportion decreases to < 10% at larger masses (Mstar > 1010.5 Modot) at any galaxy density. The fraction of the intermediate-MXG among red- sequence galaxies at 1010Modot < Mstar < 1011Modot also decreases as the density and mass increase. In particular, sim42% of the red-sequence galaxies with early-type morphologies are classified as intermediate-MXG at intermediate densities. These results suggest that the star formation activity is strongly dependent on the stellar mass, but that the morphological transformation is mainly controlled by the environment.



rate research

Read More

We have used the ROSAT All-Sky Survey to detect a known supercluster at z=0.087 in the North Ecliptic Pole region. The X-ray data greatly improve our understanding of this superclusters characteristics, approximately doubling our knowledge of the structures spatial extent and tripling the cluster/group membership compared to the optical discovery data. The supercluster is a rich structure consisting of at least 21 galaxy clusters and groups, 12 AGN, 61 IRAS galaxies, and various other objects. A majority of these components were discovered with the X-ray data, but the supercluster is also robustly detected in optical, IR, and UV wavebands. Extending 129 x 102 x 67 (1/h50 Mpc)^3, the North Ecliptic Pole Supercluster has a flattened shape oriented nearly edge-on to our line-of-sight. Owing to the softness of the ROSAT X-ray passband and the deep exposure over a large solid angle, we have detected for the first time a significant population of X-ray emitting galaxy groups in a supercluster. These results demonstrate the effectiveness of X-ray observations with contiguous coverage for studying structure in the Universe.
Evolutionary properties of infrared (IR) luminous galaxies are important keys to understand dust-obscured star formation history and galaxy evolution. Based on the near- to mid-IR imaging with 9 continuous filters of AKARI space telescope, we present the characteristics of dusty star-forming (SF) galalxies showing polycyclic aromatic hydrocarbon (PAH) features observed by the North Ecliptic Pole (NEP) wide field survey of AKARI and Herschel. All the sample galaxies from the AKARI/NEP-Wide data are selected based both on the Herschel/SPIRE 250 {mu}m detection and optical spectroscopic redshift data. The physical modelling of spectral energy distribution (SED) using all available data points from u to sub-mm 500 {mu}m band, including WISE and PACS data where available, takes unique advantages of the continuous near to mid-IR coverage, reliable constraint on far-IR peak, spectroscopically determined accurate redshifts, as well as energy balance principle by MAGPHYS. This enables us to derive physically meaningful and accurate total infrared luminosity and 8 {mu}m (or PAH) luminosity consistently. Our sample galaxies are in the redshift range z <1, and majority of them appear to be normal SF/spiral populations showing PAH features near the 8 {mu}m. These SF galaxies showing PAHs in the mid-IR include various types from quiescent to starbursts. Some of our sample show shortage of 8 {mu}m luminosity compared to the total IR luminosity and this PAH deficit gets severe in more luminous IR galaxies, suggesting PAH molecules in these galaxies destroyed by strong radiation field from SF region or a large amount of cold dust in ISM. The specific SFR of our sample shows mass dependent time evolution which is consistent with downsizing evolutionary pattern.
99 - H.Matsuhara , T. Wada , N. Oi 2017
The recent updates of the North Ecliptic Pole deep (0.5~deg$^2$, NEP-Deep) multi-wavelength survey covering from X-ray to radio-wave is presented. The NEP-Deep provides us with several thousands of 15~$mu$m or 18~$mu$m selected sample of galaxies, which is the largest sample ever made at this wavelengths. A continuous filter coverage in the mid-infrared wavelength (7, 9, 11, 15, 18, and 24~$mu$m) is unique and vital to diagnose the contributions from starbursts and AGNs in the galaxies out to $z$=2.The new goal of the project is to resolve the nature of the cosmic star formation history at the violent epoch (e.g. $z$=1--2), and to find a clue to understand its decline from $z$=1 to present universe by utilizing the unique power of the multi-wavelength survey. The progress in this context is briefly mentioned.
206 - V. Buat , N. Oi , S. Heinis 2015
(Abridged) We aim to study the evolution of dust attenuation in galaxies selected in the IR in the redshift range in which they are known to dominate the star formation activity in the universe. The comparison with other measurements of dust attenuation in samples selected using different criteria will give us a global picture of the attenuation at work in star-forming galaxies and its evolution with redshift. Using multiple filters of IRC instrument, we selected more than 4000 galaxies from their rest-frame emission at 8 microns, from z~0.2 to 2$. We built SEDs from the rest-frame UV to the far-IR by adding data in the optical-NIR and from GALEX and Herschel surveys. We fit SEDs with the physically-motivated code CIGALE. We test different templates for AGNs and recipes for dust attenuation and estimate stellar masses, SFRs, amount of dust attenuation, and AGN contribution to the total IR luminosity. The AGN contribution to the total IR luminosity is found to be on average approximately 10% with a slight increase with redshift. Dust attenuation in galaxies dominating the IR luminosity function is found to increase from z=0 to z=1 and to remain almost constant from z=1 to z=1.5. Conversely, when galaxies are selected at a fixed IR luminosity, their dust attenuation slightly decreases as redshift increases but with a large dispersion. The attenuation in our mid-IR selected sample is found ~ 2 mag higher than that found globally in the universe or in UV and Halpha line selections in the same redshift range. This difference is well explained by an increase of dust attenuation with the stellar mass, in global agreement with other recent studies. Starbursting galaxies do not systematically exhibit a high attenuation
127 - T. Takagi , H. Matsuhara , T. Goto 2012
We present a new catalogue of mid-IR sources using the AKARI NEP-Deep survey. The InfraRed Camera (IRC) onboard AKARI has a comprehensive mid-IR wavelength coverage with 9 photometric bands at 2 - 24 micron. We utilized all of these bands to cover a nearly circular area adjacent to the North Ecliptic Pole (NEP). We designed the catalogue to include most of sources detected in 7, 9, 11, 15 and 18 micron bands, and found 7284 sources in a 0.67 deg^2 area. From our simulations, we estimate that the catalogue is ~80 per cent complete to 200 micro Jy at 15 - 18 micron, and ~10 per cent of sources are missed, owing to source blending. Star-galaxy separation is conducted using only AKARI photometry, as a result of which 10 per cent of catalogued sources are found to be stars. The number counts at 11, 15, 18, and 24 micron are presented for both stars and galaxies. A drastic increase in the source density is found in between 11 and 15 micron at the flux level of ~300 micro Jy. This is likely due to the redshifted PAH emission at 8 micron, given our rough estimate of redshifts from an AKARI colour-colour plot. Along with the mid-IR source catalogue, we present optical-NIR photometry for sources falling inside a Subaru/Sprime-cam image covering part of the AKARI NEP-Deep field, which is deep enough to detect most of AKARI mid-IR sources, and useful to study optical characteristics of a complete mid-IR source sample.
comments
Fetching comments Fetching comments
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا