Do you want to publish a course? Click here

The Ionized Absorber and Nuclear Environment of IRAS 13349+2438: Multi-wavelength insights from coordinated Chandra HETGS, HST STIS, HET, and Spitzer IRS

212   0   0.0 ( 0 )
 Added by Julia C. Lee
 Publication date 2013
  fields Physics
and research's language is English




Ask ChatGPT about the research

We present results from a coordinated IR-to-X-ray spectral campaign of the QSO IRAS 13349+2438. Optical spectra reveal extreme Eigenvector-1 characteristics, but the H-beta line width argues against a NLS1 classification; we refine z=0.10853 based on [O III]. We estimate a BH mass=10^9 Msun using 2 independent methods (H-beta line width & SED fits). Blue-shifted absorption (-950km/s & -75km/s) is seen for the 1st time in STIS UV spectra from Ly-alpha, NV, & CIV. The higher velocity UV lines are coincident with the lower-ionisation (xi~1.6) X-ray warm absorber lines. A dusty multiple ionization absorber blueshifted by 700-900km/s is required to fit the X-ray data. Theoretical models comparing different ionising SEDs reveal that a UV-inclusive (i.e., the accretion disc) ionising continuum strongly impacts conclusions for the thermodynamic stability of the warm absorber. Specific to IRAS13349, an Xray-UV ionising SED favors a continuous distribution of ionisation states in a smooth flow (this paper), versus discrete clouds in pressure equilibrium (work by others where UV is omitted). Direct dust detections are seen in both the IR: PAH emission at (7.7 & 11.3)micron which may also be blended with forsterite, and (10 & 18)micron silicate emission, and X-rays: iron dust with a dust-to-gas ratio > 90%. We develop a geometrical model whereby the QSO nuclear region is viewed through the upper atmosphere of an obscuring torus. This sight line is obscured by dust that blocks a direct view of the UV/optical emission region but is largely transparent in X-rays since the gas is ionised. In our model, 20% of the intrinsic UV/optical continuum is scattered into our sight line by the far wall of an obscuring torus. An additional 2.4% of the direct light, which likely dominates the UV emission, is Thomson-scattered into our line-of-sight by another off-plane component of highly ionized gas.



rate research

Read More

We present an analysis of XMM-Newton spectra of the low-redshift quasar IRAS 13349+2438. The RGS spectrum shows a large number of absorption lines from two zones of warm absorption, with velocities of $sim$-600 km s$^{-1}$, as noted by previous authors. Additionally, we find robust evidence from multiple Ly{alpha} absorption lines for a previously undiscovered ultra-fast zone of absorption, with an outflow velocity of $-0.13pm0.01c$. The warm absorbers and ultra-fast outflow have similar mass outflow rates, around 40% of the Eddington accretion rate, but the kinetic power is dominated by the high velocity gas, which has a power of $sim$4% of the Eddington luminosity.
We present observations of the intrinsic absorption in the Seyfert 1 galaxy NGC 3783 obtained with the STIS/HST and FUSE. We have coadded multiple STIS and FUSE observations to obtain a high S/N averaged spectrum spanning 905-1730 A. The averaged spectrum reveals absorption in O VI, N V, C IV, N III, C III and the Lyman lines up to LyE in the three blueshifted kinematic components previously detected in the STIS spectrum (at radial velocities of -1320, -724, and -548 km/s). The highest velocity component exhibits absorption in Si IV. We also detect metastable C III* in this component, indicating a high density in this absorber. We separate the individual covering factors of the continuum and emission-line sources as a function of velocity in each kinematic component using the LyA and LyB lines. Additionally, we find that the continuum covering factor varies with velocity within the individual kinematic components, decreasing smoothly in the wings of the absorption by at least 60%. The covering factor of Si IV is found to be less than half that of H I and N V in the high velocity component. Additionally, the FWHM of N III and Si IV are narrower than the higher ionization lines in this component. These results indicate there is substructure within this absorber. We derive a lower limit on the total column (N_H>=10^{19}cm^{-2}) and ionization parameter (U>=0.005) in the low ionization subcomponent of this absorber. The metastable-to-total C III column density ratio implies n_e~10^9 cm^{-3} and an upper limit on the distance of the absorber from the ionizing continuum of R<=8x10^{17} cm.
We present here the results of a 180 ks Chandra-LETGS observation as part of a large multi-wavelength campaign on Mrk 509. We study the warm absorber in Mrk 509 and use the data from a simultaneous HST-COS observation in order to assess whether the gas responsible for the UV and X-ray absorption are the same. We analyzed the LETGS X-ray spectrum of Mrk 509 using the SPEX fitting package. We detect several absorption features originating in the ionized absorber of the source, along with resolved emission lines and radiative recombination continua. The absorption features belong to ions with, at least, three distinct ionization degrees. The lowest ionized component is slightly redshifted (v = +73 km/s) and is not in pressure equilibrium with the others, and therefore it is not likely part of the outflow, possibly belonging to the interstellar medium of the host galaxy. The other components are outflowing at velocities of -196 and -455 km/s, respectively. The source was observed simultaneously with HST-COS, finding 13 UV kinematic components. At least three of them can be kinematically associated with the observed X-ray components. Based on the HST-COS results and a previous FUSE observation, we find evidence that the UV absorbing gas might be co-located with the X-ray absorbing gas and belong to the same structure.
We present joint NuSTAR and XMM-Newton observations of the bright, variable quasar IRAS 13349+2438. This combined dataset shows two clear iron absorption lines at 8 and 9 keV, which are most likely associated with two layers of mildly relativistic blueshifted absorption, with velocities of 0.14c and 0.27c. We also find strong evidence for a series of Ly$alpha$ absorption lines at intermediate energies in a stacked XMM-Newton EPIC-pn spectrum, at the same blueshift as the lower velocity iron feature. This is consistent with a scenario where an outflowing wind is radially stratified, so faster, higher ionization material is observed closer to the black hole, and cooler, slower material is seen from streamlines at larger radii.
115 - N. Arav , D. Edmonds , B. Borguet 2012
Active Galactic Nuclei often show evidence of photoionized outflows. A major uncertainty in models for these outflows is the distance ($R$) to the gas from the central black hole. In this paper we use the HST/COS data from a massive multi-wavelength monitoring campaign on the bright Seyfert I galaxy Mrk 509, in combination with archival HST/STIS data, to constrain the location of the various kinematic components of the outflow. We compare the expected response of the photoionized gas to changes in ionizing flux with the changes measured in the data using the following steps: 1) We compare the column densities of each kinematic component measured in the 2001 STIS data with those measured in the 2009 COS data; 2) We use time-dependent photionization calculations with a set of simulated lightcurves to put statistical upper limits on the hydrogen number density that are consistent with the observed small changes in the ionic column densities; 3) From the upper limit on the number density, we calculate a lower limit on the distance to the absorber from the central source via the prior determination of the ionization parameter. Our method offers two improvements on traditional timescale analysis. First, we account for the physical behavior of AGN lightcurves. Second, our analysis accounts for the quality of measurement in cases where no changes are observed in the absorption troughs. The very small variations in trough ionic column densities (mostly consistent with no change) between the 2001 and 2009 epochs allow us to put statistical lower limits on the distance between 100--200 pc for all the major UV absorption components at a confidence level of 99%. These results are mainly consistent with the independent distance estimates derived for the warm absorbers from the simultaneous X-ray spectra.
comments
Fetching comments Fetching comments
Sign in to be able to follow your search criteria
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا