Do you want to publish a course? Click here

Height of Shock Formation in the Solar Corona Inferred from Observations of Type II Radio Bursts and Coronal Mass Ejections

112   0   0.0 ( 0 )
 Added by Nat Gopalswamy
 Publication date 2013
  fields Physics
and research's language is English




Ask ChatGPT about the research

Employing coronagraphic and EUV observations close to the solar surface made by the Solar Terrestrial Relations Observatory (STEREO) mission, we determined the heliocentric distance of coronal mass ejections (CMEs) at the starting time of associated metric type II bursts. We used the wave diameter and leading edge methods and measured the CME heights for a set of 32 metric type II bursts from solar cycle 24. We minimized the projection effects by making the measurements from a view that is roughly orthogonal to the direction of the ejection. We also chose image frames close to the onset times of the type II bursts, so no extrapolation was necessary. We found that the CMEs were located in the heliocentric distance range from 1.20 to 1.93 solar radii (Rs), with mean and median values of 1.43 and 1.38 Rs, respectively. We conclusively find that the shock formation can occur at heights substantially below 1.5 Rs. In a few cases, the CME height at type II onset was close to 2 Rs. In these cases, the starting frequency of the type II bursts was very low, in the range 25 to 40 MHz, which confirms that the shock can also form at larger heights. The starting frequencies of metric type II bursts have a weak correlation with the measured CME/shock heights and are consistent with the rapid decline of density with height in the inner corona.



rate research

Read More

Context: Solar eruptions, such as coronal mass ejections (CMEs), are often accompanied by accelerated electrons that can in turn emit radiation at radio wavelengths. This radiation is observed as solar radio bursts. The main types of bursts associated with CMEs are type II and type IV bursts that can sometimes show movement in the direction of the CME expansion, either radially or laterally. However, the propagation of radio bursts with respect to CMEs has only been studied for individual events. Aims: Here, we perform a statistical study of 64 moving bursts with the aim to determine how often CMEs are accompanied by moving radio bursts. This is done in order to ascertain the usefulness of using radio images in estimating the early CME expansion. Methods: Using radio imaging from the Nac{c}ay Radioheliograph (NRH), we constructed a list of moving radio bursts, defined as bursts that move across the plane of sky at a single frequency. We define their association with CMEs and the properties of associated CMEs using white-light coronagraph observations. We also determine their connection to classical type II and type IV radio burst categorisation. Results: We find that just over a quarter of type II and half of type IV bursts that occurred during the NRH observing windows in Solar Cycle 24 are accompanied by moving radio emission. All but one of the moving radio bursts are associated with white--light CMEs and the majority of moving bursts (90%) are associated with wide CMEs (>60 degrees in width). In particular, all but one of the moving bursts corresponding to type IIs are associated with wide CMEs; however, and unexpectedly, the majority of type II moving bursts are associated with slow white-light CMEs (<500 km/s). On the other hand, the majority of moving type IV bursts are associated with fast CMEs (>500 km/s).
Solar activity, in particular coronal mass ejections (CMEs), are often accompanied by bursts of radiation at metre wavelengths. Some of these bursts have a long duration and extend over a wide frequency band, namely, type IV radio bursts. However, the association of type IV bursts with coronal mass ejections is still not well understood. In this article, we perform the first statistical study of type IV solar radio bursts in the solar cycle 24. Our study includes a total of 446 type IV radio bursts that occurred during this cycle. Our results show that a clear majority, $sim 81 %$ of type IV bursts, were accompanied by CMEs, based on a temporal association with white-light CME observations. However, we found that only $sim 2.2 %$ of the CMEs are accompanied by type IV radio bursts. We categorised the type IV bursts as moving or stationary based on their spectral characteristics and found that only $sim 18 %$ of the total type IV bursts in this study were moving type IV bursts. Our study suggests that type IV bursts can occur with both `Fast ($geq 500$ km/s) and `Slow ($< 500$ km/s), and also both `Wide ($geq 60^{circ}$) and `Narrow ($< 60^{circ}$) CMEs. However, the moving type IV bursts in our study were mostly associated with `Fast and `Wide CMEs ($sim 52 %$), similar to type II radio bursts. Contrary to type II bursts, stationary type IV bursts have a more uniform association with all CME types.
Aims. The study of the morphology of coronal mass ejections (CMEs) is an auspicious approach to understanding how magnetic fields are structured within CMEs. Although earlier studies have suggested an asymmetry in the width of CMEs in orthogonal directions, this has not been inspected using multi-viewpoint observations. Methods. We inspect the early evolution (below ten solar radii) of the morphology of a dozen CMEs occurring under specific conditions of observing spacecraft location and CME trajectory, favorable to reduce uncertainties typically involved in the 3D reconstruction used here. These events are carefully reconstructed by means of a forward modeling tool using simultaneous observations of STEREO EUVI and SDO/AIA as input when originating low in the corona, and followed up in the outer fields of view of the STEREO and the SOHO coronagraphs. We then examine the height evolution of the morphological parameters arising from the reconstructions. Results. The multi-viewpoint analysis of this set of CMEs revealed that their initial expansion --below three solar radii-- is considerably asymmetric and non-self-similar. Both angular widths, namely along the main axes of CMEs ($AW_L$) and in the orthogonal direction ($AW_D$, representative of the flux rope diameter), exhibit much steeper change rates below this height, with the growth rate of $AW_L$ found to be larger than that of $AW_D$, also below that height. Angular widths along the main axes of CMEs are on average $approx$1.8 times larger than widths in the orthogonal direction $AW_D$. The ratios of the two expansion speeds, namely in the directions of CMEs main axes and in their orthogonal, are nearly constant in time after $sim$4 solar radii, with an average ratio $approx$1.6. Heights at which the width change rate is defined to stabilize are greater for $AW_L$ than for $AW_D$.
Understanding the magnetic configuration of the source regions of coronal mass ejections (CMEs) is vital in order to determine the trigger and driver of these events. Observations of four CME productive active regions are presented here, which indicate that the pre-eruption magnetic configuration is that of a magnetic flux rope. The flux ropes are formed in the solar atmosphere by the process known as flux cancellation and are stable for several hours before the eruption. The observations also indicate that the magnetic structure that erupts is not the entire flux rope as initially formed, raising the question of whether the flux rope is able to undergo a partial eruption or whether it undergoes a transition in specific flux rope configuration shortly before the CME.
The Coronal Multichannel Polarimeter (CoMP) measures not only the polarization of coronal emission, but also the full radiance profiles of coronal emission lines. For the first time, CoMP observations provide high-cadence image sequences of the coronal line intensity, Doppler shift and line width simultaneously in a large field of view. By studying the Doppler shift and line width we may explore more of the physical processes of CME initiation and propagation. Here we identify a list of CMEs observed by CoMP and present the first results of these observations. Our preliminary analysis shows that CMEs are usually associated with greatly increased Doppler shift and enhanced line width. These new observations provide not only valuable information to constrain CME models and probe various processes during the initial propagation of CMEs in the low corona, but also offer a possible cost-effective and low-risk means of space weather monitoring.
comments
Fetching comments Fetching comments
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا