No Arabic abstract
Solar activity, in particular coronal mass ejections (CMEs), are often accompanied by bursts of radiation at metre wavelengths. Some of these bursts have a long duration and extend over a wide frequency band, namely, type IV radio bursts. However, the association of type IV bursts with coronal mass ejections is still not well understood. In this article, we perform the first statistical study of type IV solar radio bursts in the solar cycle 24. Our study includes a total of 446 type IV radio bursts that occurred during this cycle. Our results show that a clear majority, $sim 81 %$ of type IV bursts, were accompanied by CMEs, based on a temporal association with white-light CME observations. However, we found that only $sim 2.2 %$ of the CMEs are accompanied by type IV radio bursts. We categorised the type IV bursts as moving or stationary based on their spectral characteristics and found that only $sim 18 %$ of the total type IV bursts in this study were moving type IV bursts. Our study suggests that type IV bursts can occur with both `Fast ($geq 500$ km/s) and `Slow ($< 500$ km/s), and also both `Wide ($geq 60^{circ}$) and `Narrow ($< 60^{circ}$) CMEs. However, the moving type IV bursts in our study were mostly associated with `Fast and `Wide CMEs ($sim 52 %$), similar to type II radio bursts. Contrary to type II bursts, stationary type IV bursts have a more uniform association with all CME types.
Context: Solar eruptions, such as coronal mass ejections (CMEs), are often accompanied by accelerated electrons that can in turn emit radiation at radio wavelengths. This radiation is observed as solar radio bursts. The main types of bursts associated with CMEs are type II and type IV bursts that can sometimes show movement in the direction of the CME expansion, either radially or laterally. However, the propagation of radio bursts with respect to CMEs has only been studied for individual events. Aims: Here, we perform a statistical study of 64 moving bursts with the aim to determine how often CMEs are accompanied by moving radio bursts. This is done in order to ascertain the usefulness of using radio images in estimating the early CME expansion. Methods: Using radio imaging from the Nac{c}ay Radioheliograph (NRH), we constructed a list of moving radio bursts, defined as bursts that move across the plane of sky at a single frequency. We define their association with CMEs and the properties of associated CMEs using white-light coronagraph observations. We also determine their connection to classical type II and type IV radio burst categorisation. Results: We find that just over a quarter of type II and half of type IV bursts that occurred during the NRH observing windows in Solar Cycle 24 are accompanied by moving radio emission. All but one of the moving radio bursts are associated with white--light CMEs and the majority of moving bursts (90%) are associated with wide CMEs (>60 degrees in width). In particular, all but one of the moving bursts corresponding to type IIs are associated with wide CMEs; however, and unexpectedly, the majority of type II moving bursts are associated with slow white-light CMEs (<500 km/s). On the other hand, the majority of moving type IV bursts are associated with fast CMEs (>500 km/s).
Similar to the Sun, other stars shed mass and magnetic flux via ubiquitous quasi-steady wind and episodic stellar coronal mass ejections (CMEs). We investigate the mass loss rate via solar wind and CMEs as a function of solar magnetic variability represented in terms of sunspot number and solar X-ray background luminosity. We estimate the contribution of CMEs to the total solar wind mass flux in the ecliptic and beyond, and its variation over different phases of the solar activity cycles. The study exploits the number of sunspots observed, coronagraphic observations of CMEs near the Sun by SOHO/LASCO, in situ observations of the solar wind at 1 AU by WIND, and GOES X-ray flux during solar cycle 23 and 24. We note that the X-ray background luminosity, occurrence rate of CMEs and ICMEs, solar wind mass flux, and associated mass loss rates from the Sun do not decrease as strongly as the sunspot number from the maximum of solar cycle 23 to the next maximum. Our study confirms a true physical increase in CME activity relative to the sunspot number in cycle 24. We show that the CME occurrence rate and associated mass loss rate can be better predicted by X-ray background luminosity than the sunspot number. The solar wind mass loss rate which is an order of magnitude more than the CME mass loss rate shows no obvious dependency on cyclic variation in sunspot number and solar X-ray background luminosity. These results have implications to the study of solar-type stars.
In this study we present a statistical analysis of 53 fast Earth-directed halo CMEs observed by the SOHO/LASCO instrument during the period Jan. 2009-Sep. 2015, and we use this CME sample to test the capabilities of a Sun-to-Earth prediction scheme for CME geoeffectiveness. First, we investigate the CME association with other solar activity features by means of multi-instrument observations of the solar magnetic and plasma properties. Second, using coronagraphic images to derive the CME kinematical properties at 0.1 AU, we propagate the events to 1 AU by means of the WSA-ENLIL+Cone model. Simulation results at Earth are compared with in-situ observations at L1. By applying the pressure balance condition at the magnetopause and a solar wind-Kp index coupling function, we estimate the expected magnetospheric compression and geomagnetic activity level, and compare them with global data records. The analysis indicates that 82% of the CMEs arrived at Earth in the next 4 days. Almost the totality of them compressed the magnetopause below geosynchronous orbits and triggered a geomagnetic storm. Complex sunspot-rich active regions associated with energetic flares result the most favourable configurations from which geoeffective CMEs originate. The analysis of related SEP events shows that 74% of the CMEs associated with major SEPs were geoeffective. Moreover, the SEP production is enhanced in the case of fast and interacting CMEs. In this work we present a first attempt at applying a Sun-to-Earth geoeffectiveness prediction scheme - based on 3D simulations and solar wind-geomagnetic activity coupling functions - to a statistical set of potentially geoeffective halo CMEs. The results of the prediction scheme are in good agreement with geomagnetic activity data records, although further studies performing a fine-tuning of such scheme are needed.
Coronal Mass Ejections (CMEs) contributes to the perturbation of solar wind in the heliosphere. Thus, depending on the different phases of the solar cycle and the rate of CME occurrence, contribution of CMEs to solar wind parameters near the Earth changes. In the present study, we examine the long term occurrence rate of CMEs, their speeds, angular widths and masses. We attempt to find correlation between near sun parameters, determined using white light images from coronagraphs, with solar wind measurements near the Earth from in-situ instruments. Importantly, we attempt to find what fraction of the averaged solar wind mass near the Earth is provided by the CMEs during different phases of the solar cycles.
We present a statistical analysis of 43 coronal dimming events, associated with Earth-directed CMEs that occurred during the period of quasi-quadrature of the SDO and STEREO satellites. We studied coronal dimmings that were observed above the limb by STEREO/EUVI and compared their properties with the mass and speed of the associated CMEs. The unique position of satellites allowed us to compare our findings with the results from Dissauer et al. (2018b, 2019), who studied the same events observed against the solar disk by SDO/AIA. Such statistics is done for the first time and confirms the relation of coronal dimmings and CME parameters for the off-limb viewpoint. The observations of dimming regions from different lines-of-sight reveal a similar decrease in the total EUV intensity ($c=0.60pm0.14$). We find that the (projected) dimming areas are typically larger for off-limb observations (mean value of $1.24pm1.23times10^{11}$ km$^2$ against $3.51pm0.71times10^{10}$ km$^2$ for on-disk), with a correlation of $c=0.63pm0.10$. This systematic difference can be explained by the (weaker) contributions to the dimming regions higher up in the corona, that cannot be detected in the on-disk observations. The off-limb dimming areas and brightnesses show very strong correlations with the CME mass ($c=0.82pm0.06$ and $c=0.75pm0.08$), whereas the dimming area and brightness change rate correlate with the CME speed ($csim0.6$). Our findings suggest that coronal dimmings have the potential to provide early estimates of mass and speed of Earth-directed CMEs, relevant for space weather forecasts, for satellite locations both at L1 and L5.