Do you want to publish a course? Click here

Noise-resistant control for a spin qubit array

168   0   0.0 ( 0 )
 Added by Jason Kestner
 Publication date 2013
  fields Physics
and research's language is English




Ask ChatGPT about the research

We develop a systematic method of performing corrected gate operations on an array of exchange-coupled singlet-triplet qubits in the presence of both fluctuating nuclear Overhauser field gradients and charge noise. The single-qubit control sequences we present have a simple form, are relatively short, and form the building blocks of a corrected CNOT gate when also implemented on the inter-qubit exchange link. This is a key step towards enabling large-scale quantum computation in a semiconductor-based architecture by facilitating error reduction below the quantum error correction threshold for both single-qubit and multi-qubit gate operations.



rate research

Read More

Entangled atomic states, such as spin squeezed states, represent a promising resource for a new generation of quantum sensors and atomic clocks. We demonstrate that optimal control techniques can be used to substantially enhance the degree of spin squeezing in strongly interacting many-body systems, even in the presence of noise and imperfections. Specifically, we present a protocol that is robust to noise which outperforms conventional methods. Potential experimental implementations are discussed.
Electron spins in Si are an attractive platform for quantum computation, backed with their scalability and fast, high-fidelity quantum logic gates. Despite the importance of two-dimensional integration with efficient connectivity between qubits for medium- to large-scale quantum computation, however, a practical device design that guarantees qubit addressability is yet to be seen. Here, we propose a practical 3 x 3 quantum dot device design and a larger-scale design as a longer-term target. The design goal is to realize qubit connectivity to the four nearest neighbors while ensuring addressability. We show that a 3 x 3 quantum dot array can execute four-qubit Grovers algorithm more efficiently than the one-dimensional counterpart. To scale up the two-dimensional array beyond 3 x 3, we propose a novel structure with ferromagnetic gate electrodes. Our results showcase the possibility of medium-sized quantum processors in Si with fast quantum logic gates and long coherence times.
A key ingredient for a quantum network is an interface between stationary quantum bits and photons, which act as flying qubits for interactions and communication. Photonic crystal architectures are promising platforms for enhancing the coupling of light to solid state qubits. Quantum dots can be integrated into a photonic crystal, with optical transitions coupling to photons and spin states forming a long-lived quantum memory. Many researchers have now succeeded in coupling these emitters to photonic crystal cavities, but there have been no demonstrations of a functional spin qubit and quantum gates in this environment. Here we have developed a coupled cavity-quantum dot system in which the dot is controllably charged with a single electron. We perform the initialization, rotation and measurement of a single electron spin qubit using laser pulses and find that the cavity can significantly improve these processes.
Waveguide-based spin-photon interfaces on the GaAs platform have emerged as a promising system for a variety of quantum information applications directly integrated into planar photonic circuits. The coherent control of spin states in a quantum dot can be achieved by applying circularly polarized laser pulses that may be coupled into the planar waveguide vertically through radiation modes. However, proper control of the laser polarization is challenging since the polarization is modified through the transformation from the far field to the exact position of the quantum dot in the nanostructure. Here we demonstrate polarization-controlled excitation of a quantum-dot electron spin and use that to perform coherent control in a Ramsey interferometry experiment. The Ramsey interference reveals a pure dephasing time of $ 2.2pm0.1 $ ns, which is comparable to the values so far only obtained in bulk media. We analyze the experimental limitations in spin initialization fidelity and Ramsey contrast and identify the underlying mechanisms.
The coherence of electron spin qubits in semiconductor quantum dots suffers mostly from low-frequency noise. During the last decade, efforts have been devoted to mitigate such noise by material engineering, leading to substantial enhancement of the spin dephasing time for an idling qubit. However, the role of the environmental noise during spin manipulation, which determines the control fidelity, is less understood. We demonstrate an electron spin qubit whose coherence in the driven evolution is limited by high-frequency charge noise rather than the quasi-static noise inherent to any semiconductor device. We employed a feedback control technique to actively suppress the latter, demonstrating a $pi$-flip gate fidelity as high as $99.04pm 0.23,%$ in a gallium arsenide quantum dot. We show that the driven-evolution coherence is limited by the longitudinal noise at the Rabi frequency, whose spectrum resembles the $1/f$ noise observed in isotopically purified silicon qubits.
comments
Fetching comments Fetching comments
Sign in to be able to follow your search criteria
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا