No Arabic abstract
The Galaxy And Mass Assembly Survey (GAMA) has now been operating for almost 5 years gathering spectroscopic redshifts for five regions of sky spanning 300 sq degrees in total to a depth of r<19.8 mag. The survey has amassed over 225,000 redshifts making it the third largest redshift campaign after the SDSS and BOSS surveys. The survey has two novel features that set it apart: (1) complete and uniform sampling to a fixed flux limit (r<19.8 mag) regardless of galaxy clustering due to multiple-visits to each sky region, enabling the construction of high-fidelity catalogues of groups and pairs, (2) co-ordination with diverse imaging campaigns which together sample an extremely broad range along the electro-magnetic spectrum from the UV (GALEX) through optical (VST KIDs), near-IR (VISTA VIKING), mid-IR (WISE), far-IR (Herschel-Atlas), 1m (GMRT), and eventually 20cm continuum and rest-frame 21cm line measurements (ASKAP DINGO). Apart from the ASKAP campaign all multi-wavelength programmes are either complete or in the final stages of observations and the UV-far-IR data are expected to be fully merged by the end of 2013. This article provides a brief flavour of the coming panchromatic database which will eventually include measurements or upper-limits across 27 wavebands for 380,000 galaxies. GAMA DR2 is scheduled for the end of January 2013.
The Panchromatic Hubble Andromeda Treasury (PHAT) is an on-going HST Multicycle Treasury program to image ~1/3 of M31s star forming disk in 6 filters, from the UV to the NIR. The full survey will resolve the galaxy into more than 100 million stars with projected radii from 0-20 kpc over a contiguous 0.5 square degree area in 828 orbits, producing imaging in the F275W and F336W filters with WFC3/UVIS, F475W and F814W with ACS/WFC, and F110W and F160W with WFC3/IR. The resulting wavelength coverage gives excellent constraints on stellar temperature, bolometric luminosity, and extinction for most spectral types. The photometry reaches SNR=4 at F275W=25.1, F336W=24.9, F475W=27.9, F814W=27.1, F110W=25.5, and F160W=24.6 for single pointings in the uncrowded outer disk; however, the optical and NIR data are crowding limited, and the deepest reliable magnitudes are up to 5 magnitudes brighter in the inner bulge. All pointings are dithered and produce Nyquist-sampled images in F475W, F814W, and F160W. We describe the observing strategy, photometry, astrometry, and data products, along with extensive tests of photometric stability, crowding errors, spatially-dependent photometric biases, and telescope pointing control. We report on initial fits to the structure of M31s disk, derived from the density of RGB stars, in a way that is independent of the assumed M/L and is robust to variations in dust extinction. These fits also show that the 10 kpc ring is not just a region of enhanced recent star formation, but is instead a dynamical structure containing a significant overdensity of stars with ages >1 Gyr. (Abridged)
We present the Lambda Adaptive Multi-Band Deblending Algorithm in R (LAMBDAR), a novel code for calculating matched aperture photometry across images that are neither pixel- nor PSF-matched, using prior aperture definitions derived from high resolution optical imaging. The development of this program is motivated by the desire for consistent photometry and uncertainties across large ranges of photometric imaging, for use in calculating spectral energy distributions. We describe the program, specifically key features required for robust determination of panchromatic photometry: propagation of apertures to images with arbitrary resolution, local background estimation, aperture normalisation, uncertainty determination and propagation, and object deblending. Using simulated images, we demonstrate that the program is able to recover accurate photometric measurements in both high-resolution, low-confusion, and low-resolution, high-confusion, regimes. We apply the program to the 21-band photometric dataset from the Galaxy And Mass Assembly (GAMA) Panchromatic Data Release (PDR; Driver et al. 2016), which contains imaging spanning the far-UV to the far-IR. We compare photometry derived from LAMBDAR with that presented in Driver et al. (2016), finding broad agreement between the datasets. Nonetheless, we demonstrate that the photometry from LAMBDAR is superior to that from the GAMA PDR, as determined by a reduction in the outlier rate and intrinsic scatter of colours in the LAMBDAR dataset. We similarly find a decrease in the outlier rate of stellar masses and star formation rates using LAMBDAR photometry. Finally, we note an exceptional increase in the number of UV and mid-IR sources able to be constrained, which is accompanied by a significant increase in the mid-IR colour-colour parameter-space able to be explored.
Using the complete GAMA-I survey covering ~142 sq. deg. to r=19.4, of which ~47 sq. deg. is to r=19.8, we create the GAMA-I galaxy group catalogue (G3Cv1), generated using a friends-of-friends (FoF) based grouping algorithm. Our algorithm has been tested extensively on one family of mock GAMA lightcones, constructed from Lambda-CDM N-body simulations populated with semi-analytic galaxies. Recovered group properties are robust to the effects of interlopers and are median unbiased in the most important respects. G3Cv1 contains 14,388 galaxy groups (with multiplicity >= 2$), including 44,186 galaxies out of a possible 110,192 galaxies, implying ~40% of all galaxies are assigned to a group. The similarities of the mock group catalogues and G3Cv1 are multiple: global characteristics are in general well recovered. However, we do find a noticeable deficit in the number of high multiplicity groups in GAMA compared to the mocks. Additionally, despite exceptionally good local spatial completeness, G3Cv1 contains significantly fewer compact groups with 5 or more members, this effect becoming most evident for high multiplicity systems. These two differences are most likely due to limitations in the physics included of the current GAMA lightcone mock. Further studies using a variety of galaxy formation models are required to confirm their exact origin.
The Galaxy And Mass Assembly (GAMA) survey has been operating since February 2008 on the 3.9-m Anglo-Australian Telescope using the AAOmega fibre-fed spectrograph facility to acquire spectra with a resolution of R~1300 for 120,862 SDSS selected galaxies. The target catalogue constitutes three contiguous equatorial regions centred at 9h (G09), 12h (G12) and 14.5h (G15) each of 12 x 4 sq.deg to limiting fluxes of r < 19.4, r < 19.8, and r < 19.4 mag respectively (and additional limits at other wavelengths). Spectra and reliable redshifts have been acquired for over 98 per cent of the galaxies within these limits. Here we present the survey footprint, progression, data reduction, redshifting, re-redshifting, an assessment of data quality after 3 years, additional image analysis products (including ugrizYJHK photometry, Sersic profiles and photometric redshifts), observing mask, and construction of our core survey catalogue (GamaCore). From this we create three science ready catalogues: GamaCoreDR1 for public release, which includes data acquired during year 1 of operations within specified magnitude limits (February 2008 to April 2008); GamaCoreMainSurvey containing all data above our survey limits for use by the GAMA team and collaborators; and GamaCoreAtlasSv containing year 1, 2 and 3 data matched to Herschel-ATLAS Science Demonstration data. These catalogues along with the associated spectra, stamps and profiles can be accessed via the GAMA website: http://www.gama-survey.org/
We utilize the galaxy shape catalogue from the first-year data release of the Subaru Hyper Suprime-cam Survey (HSC) to study the dark matter content of galaxy groups in the Universe using weak gravitational lensing. As our lens sample, we use galaxy groups that have been spectroscopically selected from the Galaxy Mass and Assembly galaxy survey in approximately 100 sq. degrees of the sky that overlap with the HSC survey. We restrict our analysis to the 1587 groups with at least five group members. We divide these galaxy groups into six bins each of galaxy group luminosity and group member velocity dispersion and measure the coherent tangential ellipticity pattern on background HSC galaxies imprinted by weak gravitational lensing. We measure the weak lensing signal with a signal-to-noise ratio of 55 and 51 for these two different selections, respectively. We use a Bayesian halo model framework to infer the halo mass distribution of our galaxy groups binned in the two different observable properties and obtain constraints on the power-law scaling relation between mean halo masses and the two group observable properties. We obtain a 5 percent constraint on the amplitude of the scaling relation between halo mass and group luminosity with $langle Mrangle = (0.81pm0.04)times10^{14}h^{-1}M_odot$ for $L_{rm grp}=10^{11.5}h^{-2}L_odot$, and a power-law index of $alpha=1.01pm0.07$. We also obtain a 5-percent constraint on the amplitude of the scaling relation between halo mass and velocity dispersion with $langle Mrangle=(0.93pm0.05)times10^{14}h^{-1}M_odot$ for $sigma=500{,rm kms}^{-1}$ and a power-law index $alpha=1.52pm0.10$, although these scaling relations are sensitive to the exact cuts applied to the number of group members. Comparisons with similar scaling relations from the literature indicate that our results are consistent, but have significantly reduced errors.