Do you want to publish a course? Click here

Galaxy and Mass Assembly (GAMA): survey diagnostics and core data release

505   0   0.0 ( 0 )
 Added by Simon P. Driver
 Publication date 2010
  fields Physics
and research's language is English




Ask ChatGPT about the research

The Galaxy And Mass Assembly (GAMA) survey has been operating since February 2008 on the 3.9-m Anglo-Australian Telescope using the AAOmega fibre-fed spectrograph facility to acquire spectra with a resolution of R~1300 for 120,862 SDSS selected galaxies. The target catalogue constitutes three contiguous equatorial regions centred at 9h (G09), 12h (G12) and 14.5h (G15) each of 12 x 4 sq.deg to limiting fluxes of r < 19.4, r < 19.8, and r < 19.4 mag respectively (and additional limits at other wavelengths). Spectra and reliable redshifts have been acquired for over 98 per cent of the galaxies within these limits. Here we present the survey footprint, progression, data reduction, redshifting, re-redshifting, an assessment of data quality after 3 years, additional image analysis products (including ugrizYJHK photometry, Sersic profiles and photometric redshifts), observing mask, and construction of our core survey catalogue (GamaCore). From this we create three science ready catalogues: GamaCoreDR1 for public release, which includes data acquired during year 1 of operations within specified magnitude limits (February 2008 to April 2008); GamaCoreMainSurvey containing all data above our survey limits for use by the GAMA team and collaborators; and GamaCoreAtlasSv containing year 1, 2 and 3 data matched to Herschel-ATLAS Science Demonstration data. These catalogues along with the associated spectra, stamps and profiles can be accessed via the GAMA website: http://www.gama-survey.org/



rate research

Read More

The Galaxy And Mass Assembly (GAMA) survey is one of the largest contemporary spectroscopic surveys of low-redshift galaxies. Covering an area of ~286 deg^2 (split among five survey regions) down to a limiting magnitude of r < 19.8 mag, we have collected spectra and reliable redshifts for 238,000 objects using the AAOmega spectrograph on the Anglo-Australian Telescope. In addition, we have assembled imaging data from a number of independent surveys in order to generate photometry spanning the wavelength range 1 nm - 1 m. Here we report on the recently completed spectroscopic survey and present a series of diagnostics to assess its final state and the quality of the redshift data. We also describe a number of survey aspects and procedures, or updates thereof, including changes to the input catalogue, redshifting and re-redshifting, and the derivation of ultraviolet, optical and near-infrared photometry. Finally, we present the second public release of GAMA data. In this release we provide input catalogue and targeting information, spectra, redshifts, ultraviolet, optical and near-infrared photometry, single-component Sersic fits, stellar masses, H$alpha$-derived star formation rates, environment information, and group properties for all galaxies with r < 19.0 mag in two of our survey regions, and for all galaxies with r < 19.4 mag in a third region (72,225 objects in total). The database serving these data is available at http://www.gama-survey.org/.
Using the complete GAMA-I survey covering ~142 sq. deg. to r=19.4, of which ~47 sq. deg. is to r=19.8, we create the GAMA-I galaxy group catalogue (G3Cv1), generated using a friends-of-friends (FoF) based grouping algorithm. Our algorithm has been tested extensively on one family of mock GAMA lightcones, constructed from Lambda-CDM N-body simulations populated with semi-analytic galaxies. Recovered group properties are robust to the effects of interlopers and are median unbiased in the most important respects. G3Cv1 contains 14,388 galaxy groups (with multiplicity >= 2$), including 44,186 galaxies out of a possible 110,192 galaxies, implying ~40% of all galaxies are assigned to a group. The similarities of the mock group catalogues and G3Cv1 are multiple: global characteristics are in general well recovered. However, we do find a noticeable deficit in the number of high multiplicity groups in GAMA compared to the mocks. Additionally, despite exceptionally good local spatial completeness, G3Cv1 contains significantly fewer compact groups with 5 or more members, this effect becoming most evident for high multiplicity systems. These two differences are most likely due to limitations in the physics included of the current GAMA lightcone mock. Further studies using a variety of galaxy formation models are required to confirm their exact origin.
154 - A. M. Hopkins 2013
The Galaxy And Mass Assembly (GAMA) survey is a multiwavelength photometric and spectroscopic survey, using the AAOmega spectrograph on the Anglo-Australian Telescope to obtain spectra for up to ~300000 galaxies over 280 square degrees, to a limiting magnitude of r_pet < 19.8 mag. The target galaxies are distributed over 0<z<0.5 with a median redshift of z~0.2, although the redshift distribution includes a small number of systems, primarily quasars, at higher redshifts, up to and beyond z=1. The redshift accuracy ranges from sigma_v~50km/s to sigma_v~100km/s depending on the signal-to-noise of the spectrum. Here we describe the GAMA spectroscopic reduction and analysis pipeline. We present the steps involved in taking the raw two-dimensional spectroscopic images through to flux-calibrated one-dimensional spectra. The resulting GAMA spectra cover an observed wavelength range of 3750<lambda<8850 A at a resolution of R~1300. The final flux calibration is typically accurate to 10-20%, although the reliability is worse at the extreme wavelength ends, and poorer in the blue than the red. We present details of the measurement of emission and absorption features in the GAMA spectra. These measurements are characterised through a variety of quality control analyses detailing the robustness and reliability of the measurements. We illustrate the quality of the measurements with a brief exploration of elementary emission line properties of the galaxies in the GAMA sample. We demonstrate the luminosity dependence of the Balmer decrement, consistent with previously published results, and explore further how Balmer decrement varies with galaxy mass and redshift. We also investigate the mass and redshift dependencies of the [NII]/Halpha vs [OIII]/Hbeta spectral diagnostic diagram, commonly used to discriminate between star forming and nuclear activity in galaxies.
We describe data release 3 (DR3) of the Galaxy And Mass Assembly (GAMA) survey. The GAMA survey is a spectroscopic redshift and multi-wavelength photometric survey in three equatorial regions each of 60.0 deg^2 (G09, G12, G15), and two southern regions of 55.7 deg^2 (G02) and 50.6 deg^2 (G23). DR3 consists of: the first release of data covering the G02 region and of data on H-ATLAS sources in the equatorial regions; and updates to data on sources released in DR2. DR3 includes 154809 sources with secure redshifts across four regions. A subset of the G02 region is 95.5% redshift complete to r<19.8 over an area of 19.5 deg^2, with 20086 galaxy redshifts, that overlaps substantially with the XXL survey (X-ray) and VIPERS (redshift survey). In the equatorial regions, the main survey has even higher completeness (98.5%), and spectra for about 75% of H-ATLAS filler targets were also obtained. This filler sample extends spectroscopic redshifts, for probable optical counterparts to H-ATLAS sub-mm sources, to 0.8 mag deeper (r<20.6) than the GAMA main survey. There are 25814 galaxy redshifts for H-ATLAS sources from the GAMA main or filler surveys. GAMA DR3 is available at the survey website (www.gama-survey.org/dr3/).
138 - D. J. Farrow 2015
We measure the projected 2-point correlation function of galaxies in the 180 deg$^2$ equatorial regions of the GAMA II survey, for four different redshift slices between z = 0.0 and z=0.5. To do this we further develop the Cole (2011) method of producing suitable random catalogues for the calculation of correlation functions. We find that more r-band luminous, more massive and redder galaxies are more clustered. We also find that red galaxies have stronger clustering on scales less than ~3 $h^{-1}$ Mpc. We compare to two differe
comments
Fetching comments Fetching comments
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا