Do you want to publish a course? Click here

Quark-Hadron Phase Transition in the PNJL model for interacting quarks

150   0   0.0 ( 0 )
 Added by Kanako Yamazaki
 Publication date 2012
  fields
and research's language is English




Ask ChatGPT about the research

We study quark-hadron phase transition at finite temperature with zero net baryon density by the Nambu-Jona-Lasinio model for interacting quarks in uniform background temporal color gauge fields. At low temperatures, unphysical thermal quark-antiquark excitations which would appear in the mean field approximation, are eliminated by en- forcing vanishing expectation value of the Polyakov-loop of the background gauge field, while at high temperatures this expectation value is taken as unity allowing thermal excitations of free quarks and antiquarks. Mesonic excitations in the low temperature phase appear in the correlation energy as contributions of collective excitations. We describe them in terms of thermal fluctuations of auxiliary fields in one-loop (Gaus- sian) approximation, where pions appear as Nambu-Goldstone modes associated with dynamical symmetry breaking of the chiral symmetry in the limit of vanishing bare quark masses. We show that at low temperatures the equations of state reduces to that of free meson gas with small corrections arising from the composite nature of mesons. At high temperatures, all these collective mesonic excitations melt into continuum of quark anti-quark excitations and mesonic correlations gives only small contributions the pressure of the system.



rate research

Read More

126 - Kanako Yamazaki , T. Matsui 2013
We extend our previous study of the quark-hadron phase transition at finite temperatures with zero net baryon density by two flavor Nambu-Jona-Lasinio model with Polyakov loop to the three flavor case in a scheme which incorporates flavor nonet pseudo scalar and scalar mesonic correlations on equal footing. The role of the axial U(1) breaking Kobayashi-Maskawa-t Hooft interaction on the low-lying thermal excitations is examined. At low temperatures, only mesonic correlations, mainly due to low mass mesonic collective excitations, pions and kaons, dominate the pressure while thermal excitations of quarks are suppressed by the Polyakov loop. As temperature increases, kaons and pions melt into the continuum of quark and anti-quark excitations successively so that hadronic phase changes continuously to the quark phase where quark excitations dominate pressure together with gluon pressure coming from the effective potential for the Polyakov loop. Since we introduce mesons as not elementary fields but auxiliary fields made from quarks, we can describe the phase transition between hadronic phase and quark phase in a unified fashion.
178 - Kanako Yamazaki , T. Matsui 2013
We study the quark-hadron phase transition by using a three flavor Nambu-Jona-Lasinio model with the Polyakov loop at zero chemical potential, extending our previous work with two flavor model. We show that the equation of state at low temperatures is dominated by pions and kaons as collective modes of quarks and anti-quarks. As temperature increases, mesonic collective modes melt into the continuum of quark and anti-quark so that hadronic phase changes continuously to the quark phase where quark excitations dominate pressure.
The region of large net-baryon densities in the QCD phase diagram is expected to exhibit a first-order phase transition. Experimentally, its study will be one of the primaryobjectives for the upcoming FAIR accelerator. We model the transition between quarks and hadrons in a heavy-ion collision using a fluid which is coupled to the explicit dynamics of the chiral order parameter and a dilaton field. This allows us to investigate signals stemming from the nonequilibrium evolution during the expansion of the hot plasma. Special emphasis is put on an event-by-event analysis of baryon number fluctuations which have long since been claimed to be sensitive to a critical point.
In this work we present the features of the hadron-quark phase transition diagrams in which the pions are included in the system. To construct such diagrams we use two different models in the description of the hadronic and quark sectors. At the quark level, we consider two distinct parametrizations of the Polyakov-Nambu-Jona-Lasinio (PNJL) models. In the hadronic side, we use a well known relativistic mean-field (RMF) nonlinear Walecka model. We show that the effect of the pions on the hadron-quark phase diagrams is to move the critical end point (CEP) of the transitions lines. Such an effect also depends on the value of the critical temperature (T_0) in the pure gauge sector used to parametrize the PNJL models. Here we treat the phase transitions using two values for T_0, namely, T_0 = 270 MeV and T_0 = 190 MeV. The last value is used to reproduce lattice QCD data for the transition temperature at zero chemical potential.
We study the nucleation of a quark gluon plasma (QGP) phase in a hadron gas at low temperatures and high baryon densities. This kind of process will presumably happen very often in nuclear collisions at FAIR and NICA. When the appropriate energy densities (or baryon densities) and temperatures are reached the conversion of one phase into another is not instantaneous. It is a complex process, which involves the nucleation of bubbles of the new phase. One important element of this transition process is the rate of growth of a QGP bubble. In order to estimate it we solve the Relativistic Rayleigh$-$Plesset equation which governs the dynamics of a relativistic spherical bubble in a strongly interacting medium. The baryon rich hadron gas is represented by the nonlinear Walecka model and the QGP is described by the MIT bag model and also by a mean field model of QCD.
comments
Fetching comments Fetching comments
Sign in to be able to follow your search criteria
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا