Do you want to publish a course? Click here

Search for solar axions in XMASS, a large liquid-xenon detector

129   0   0.0 ( 0 )
 Added by Shigetaka Moriyama
 Publication date 2012
  fields Physics
and research's language is English




Ask ChatGPT about the research

XMASS, a low-background, large liquid-xenon detector, was used to search for solar axions that would be produced by bremsstrahlung and Compton effects in the Sun. With an exposure of 5.6ton days of liquid xenon, the model-independent limit on the coupling for mass $ll$ 1keV is $|g_{aee}|< 5.4times 10^{-11}$ (90% C.L.), which is a factor of two stronger than the existing experimental limit. The bounds on the axion masses for the DFSZ and KSVZ axion models are 1.9 and 250eV, respectively. In the mass range of 10-40keV, this study produced the most stringent limit, which is better than that previously derived from astrophysical arguments regarding the Sun to date.



rate research

Read More

A search for dark matter (DM) with mass in the sub-GeV region (0.32-1 GeV) was conducted by looking for an annual modulation signal in XMASS, a single-phase liquid xenon detector. Inelastic nuclear scattering accompanied by bremsstrahlung emission was used to search down to an electron equivalent energy of 1 keV. The data used had a live time of 2.8 years (3.5 years in calendar time), resulting in a total exposure of 2.38 ton-years. No significant modulation signal was observed and 90% confidence level upper limits of $1.6 times 10^{-33}$ cm$^2$ at 0.5 GeV was set for the DM-nucleon cross section. This is the first experimental result of a search for DM mediated by the bremsstrahlung effect. In addition, a search for DM with mass in the multi-GeV region (4-20 GeV) was conducted with a lower energy threshold than previous analysis of XMASS. Elastic nuclear scattering was used to search down to a nuclear recoil equivalent energy of 2.3 keV, and upper limits of 2.9 $times$10$^{-42}$ cm$^2$ at 8 GeV was obtained.
190 - K. Abe , K. Hieda , K. Hiraide 2012
A search for light dark matter using low-threshold data from the single phase liquid xenon scintillation detector XMASS, has been conducted. Using the entire 835 kg inner volume as target, the analysis threshold can be lowered to 0.3 keVee (electron-equivalent) to search for light dark matter. With low-threshold data corresponding to a 5591.4 kg$cdot$day exposure of the detector and without discriminating between nuclear-recoil and electronic events, XMASS excludes part of the parameter space favored by other experiments.
179 - K. Abe , K. Hieda , K. Hiraide 2014
Bosonic superweakly interacting massive particles (super-WIMPs) are a candidate for warm dark matter. With the absorption of such a boson by a xenon atom these dark matter candidates would deposit an energy equivalent to their rest mass in the detector. This is the first direct detection experiment exploring the vector super-WIMPs in the mass range between 40 and 120 keV. Using 165.9 days of data no significant excess above background was observed in the fiducial mass of 41 kg. The present limit for the vector super-WIMPs excludes the possibility that such particles constitute all of dark matter. The absence of a signal also provides the most stringent direct constraint on the coupling constant of pseudoscalar super-WIMPs to electrons. The unprecedented sensitivity was achieved exploiting the low background at a level $10^{-4}$ kg$^{-1}$keV$_{ee}^{-1}$day$^{-1}$ in the detector.
We report an in-situ measurement of the nuclear recoil (NR) scintillation decay time constant in liquid xenon (LXe) using the XMASS-I detector at the Kamioka underground laboratory in Japan. XMASS-I is a large single-phase LXe scintillation detector whose purpose is the direct detection of dark matter via NR which can be induced by collisions between Weakly Interacting Massive Particles (WIMPs) and a xenon nucleus. The inner detector volume contains 832 kg of LXe. $^{252}$Cf was used as an external neutron source for irradiating the detector. The scintillation decay time constant of the resulting neutron induced NR was evaluated by comparing the observed photon detection times with Monte Carlo simulations. Fits to the decay time prefer two decay time components, one for each of the Xe$_{2}^{*}$ singlet and triplet states, with $tau_{S}$ = 4.3$pm$0.6 ns taken from prior research, $tau_{T}$ was measured to be 26.9$^{+0.7}_{-1.1}$ ns with a singlet state fraction F$_{S}$ of 0.252$^{+0.027}_{-0.019}$.We also evaluated the performance of pulse shape discrimination between NR and electron recoil (ER) with the aim of reducing the electromagnetic background in WIMP searches. For a 50% NR acceptance, the ER acceptance was 13.7${pm}$1.0% and 4.1${pm}$0.7% in the energy ranges of 5--10 keV$_{rm ee}$ and 10--15 keV$_{rm ee}$, respectively.
A search for dark matter was conducted by looking for an annual modulation signal due to the Earths rotation around the Sun using XMASS, a single phase liquid xenon detector. The data used for this analysis was 359.2 live days times 832 kg of exposure accumulated between November 2013 and March 2015. When we assume Weakly Interacting Massive Particle (WIMP) dark matter elastically scattering on the target nuclei, the exclusion upper limit of the WIMP-nucleon cross section 4.3$times$10$^{-41}$cm$^2$ at 8 GeV/c$^2$ was obtained and we exclude almost all the DAMA/LIBRA allowed region in the 6 to 16 GeV/c$^2$ range at $sim$10$^{-40}$cm$^2$. The result of a simple modulation analysis, without assuming any specific dark matter model but including electron/$gamma$ events, showed a slight negative amplitude. The $p$-values obtained with two independent analyses are 0.014 and 0.068 for null hypothesis, respectively. we obtained 90% C.L. upper bounds that can be used to test various models. This is the first extensive annual modulation search probing this region with an exposure comparable to DAMA/LIBRA.
comments
Fetching comments Fetching comments
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا