Do you want to publish a course? Click here

Controlled dephasing of an electron interferometer with a path detector at equilibrium

103   0   0.0 ( 0 )
 Added by Emil Weisz
 Publication date 2012
  fields Physics
and research's language is English




Ask ChatGPT about the research

Controlled dephasing of electrons, via which path detection, involves, in general, coupling a coherent system to a current driven noise source. However, here, we present a case in which a nearly isolated electron puddle at thermal equilibrium strongly affects the coherence of a nearby electronic interferometer. Moreover, for certain average electron occupations of the puddle, the interferometer exhibits complete dephasing. This robust phenomenon stems from the Friedel Sum Rule, which relates a systems occupation with its scattering phases. The interferometer opens a peeping window into physics of the isolated electron puddle, which cannot be accessed otherwise.



rate research

Read More

Quantum coherence of superposed states, especially of entangled states, is indispensable for many quantum technologies. However, it is vulnerable to environmental noises, posing a fundamental challenge in solid-state systems including spin qubits. Here we show a scheme of entanglement engineering where pure dephasing assists the generation of quantum entanglement at distant sites in a chain of electron spins confined in semiconductor quantum dots. One party of an entangled spin pair, prepared at a single site, is transferred to the next site and then adiabatically swapped with a third spin using a transition across a multi-level avoided crossing. This process is accelerated by the noise-induced dephasing through a variant of the quantum Zeno effect, without sacrificing the coherence of the entangled state. Our finding brings insight into the spin dynamics in open quantum systems coupled to noisy environments, opening an avenue to quantum state manipulation utilizing decoherence effects.
We demonstrate the transmission of single electron wavepackets from a clock-controlled source through an empty high-energy edge channel. The quantum dot source is loaded with single electrons which are then emitted with high kinetic energy ($sim$150 meV). We find at high magnetic field that these electron can be transported over several microns without inelastic electron-electron or electron-phonon scattering. Using a time-resolved spectroscopic technique, we measure the electron energy and wavepacket size at picosecond time scales. We also show how our technique can be used to switch individual electrons into different paths.
We consider a superconducting microwave cavity capacitively coupled to both a quantum conductor and its electronic reservoirs. We analyze in details how the measurements of the cavity microwave field, which are related to the electronic charge susceptibility, can be used to extract information on the transport properties of the quantum conductor. We show that the asymmetry of the capacitive couplings between the electronic reservoirs and the cavity plays a crucial role in relating optical measurements to transport properties. For asymmetric capacitive couplings, photonic measurements can be used to probe the finite low frequency admittance of the quantum conductor, the real part of which being related to the differential conductance. In particular, when the quantum dot is far from resonance, the charge susceptibility is directly proportional to the admittance for a large range of frequencies and voltages. However, when the quantum conductor is near a resonance, such a relation generally holds only at low frequency and for equal tunnel coupling or low voltage. Beyond this low-energy near equilibrium regime, the charge susceptibility and thus the optical transmission offers new insights on the quantum conductors since the optical observables are not directly connected to transport quantities. For symmetric lead capacitive couplings, we show that the optical measurements can be used to reveal the Korringa-Shiba relation, connecting the reactive to the dissipative part of the susceptibility, at low frequency and low bias.
We show that [VO(TPP)] (vanadyl tetraphenylporphyrinate) is a promising system suitable to implement quantum computation algorithms based on encoding information in multi-level (qudit) units. Indeed, it embeds an electronic spin 1/2 coupled through hyperfine interaction to a nuclear spin 7/2, both characterized by remarkable coherence. We demonstrate this by an extensive broadband nuclear magnetic resonance study, which allow us to characterize the nuclear spin-Hamiltonian and to measure the spin dephasing time as a function of the magnetic field. In addition, we combine targeted measurements and numerical simulations to show that nuclear spin transitions conditioned by the state of the electronic qubit can be individually addressed and coherently manipulated by resonant radio-frequency pulses, thanks to the remarkably long coherence times and the effective quadrupolar coupling induced by the strong hyperfine coupling. This approach may open new perspectives for developing new molecular qubit-qudit systems.
We have performed spectroscopic measurements of a superconducting qubit dispersively coupled to a nonlinear resonator driven by a pump microwave field. Measurements of the qubit frequency shift provide a sensitive probe of the intracavity field, yielding a precise characterization of the resonator nonlinearity. The qubit linewidth has a complex dependence on the pump frequency and amplitude, which is correlated with the gain of the nonlinear resonator operated as a small-signal amplifier. The corresponding dephasing rate is found to be close to the quantum limit in the low-gain limit of the amplifier.
comments
Fetching comments Fetching comments
Sign in to be able to follow your search criteria
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا