Do you want to publish a course? Click here

Fermiology of Strongly Spin-Orbit Coupled Superconductor Sn1-xInxTe and its Implication to Topological Superconductivity

165   0   0.0 ( 0 )
 Added by Seigo Souma
 Publication date 2012
  fields Physics
and research's language is English




Ask ChatGPT about the research

We have performed angle-resolved photoemission spectroscopy of the strongly spin-orbit coupled low-carrier density superconductor Sn1-xInxTe (x = 0.045) to elucidate the electronic states relevant to the possible occurrence of topological superconductivity recently reported for this compound from point-contact spectroscopy. The obtained energy-band structure reveals a small holelike Fermi surface centered at the L point of the bulk Brillouin zone, together with a signature of a topological surface state which indicates that this superconductor is essentially a doped topological crystalline insulator characterized by band inversion and mirror symmetry. A comparison of the electronic states with a band-non-inverted superconductor possessing a similar Fermi surface structure, Pb1-xTlxTe, suggests that the anomalous behavior in the superconducting state of Sn1-xInxTe is likely to be related to the peculiar orbital characteristics of the bulk valence band and/or the presence of a topological surface state.



rate research

Read More

In fermionic systems, superconductivity and superfluidity are enabled through the condensation of fermion pairs. The nature of this condensate can be tuned by varying the pairing strength, with weak coupling yielding a BCS-like condensate and strong coupling resulting in a BEC-like process. However, demonstration of this cross-over has remained elusive in electronic systems. Here we study graphene double-layers separated by an atomically thin insulator. Under applied magnetic field, electrons and holes couple across the barrier to form bound magneto-excitons whose pairing strength can be continuously tuned by varying the effective layer separation. Using temperature-dependent Coulomb drag and counter-flow current measurements, we demonstrate the capability to tune the magneto-exciton condensate through the entire weak-coupling to strong-coupling phase diagram. Our results establish magneto-exciton condensates in graphene as a model platform to study the crossover between two Bosonic quantum condensate phases in a solid state system.
Motivated by recent experiments demonstrating intricate quantum Hall physics on the surface of elemental bismuth, we consider proximity coupling an $s$-wave superconductor to a two-dimensional electron gas with strong Rashba spin-orbit interactions in the presence of a strong perpendicular magnetic field. We focus on the high-field limit so that the superconductivity can be treated as a perturbation to the low-lying Landau levels. In the clean case, wherein the superconducting order parameter takes the form of an Abrikosov vortex lattice, we show that a lattice of hybridized Majorana modes emerges near the plateau transition of the lowest Landau level. However, unless magnetic-symmetry-violating perturbations are present, the system always has an even number of chiral Majorana edge modes and thus is strictly speaking Abelian in nature, in agreement with previous work on related setups. Interestingly, however, a weak topological superconducting phase can very naturally be stabilized near the plateau transition for the square vortex lattice. The relevance of our findings to potential near-term experiments on proximitized materials such as bismuth will be discussed.
The intense search for topological superconductivity is inspired by the prospect that it hosts Majorana quasiparticles. We explore in this work the optimal design for producing topological superconductivity by combining a quantum Hall state with an ordinary superconductor. To this end, we consider a microscopic model for a topologically trivial two-dimensional p-wave superconductor exposed to a magnetic field, and find that the interplay of superconductivity and Landau level physics yields a rich phase diagram of states as a function of $mu/t$ and $Delta/t$, where $mu$, $t$ and $Delta$ are the chemical potential, hopping strength, and the amplitude of the superconducting gap. In addition to quantum Hall states and topologically trivial p-wave superconductor, the phase diagram also accommodates regions of topological superconductivity. Most importantly, we find that application of a non-uniform, periodic magnetic field produced by a square or a hexagonal lattice of $h/e$ fluxoids greatly facilitates regions of topological superconductivity in the limit of $Delta/trightarrow 0$. In contrast, a uniform magnetic field, a hexagonal Abrikosov lattice of $h/2e$ fluxoids, or a one dimensional lattice of stripes produces topological superconductivity only for sufficiently large $Delta/t$.
The existence of topological superconductors preserving time-reversal symmetry was recently predicted, and they are expected to provide a solid-state realization of itinerant massless Majorana fermions and a route to topological quantum computation. Their first concrete example, CuxBi2Se3, was discovered last year, but the search for new materials has so far been hindered by the lack of guiding principle. Here, we report point-contact spectroscopy experiments showing that the low-carrier-density superconductor Sn_{1-x}In_{x}Te is accompanied with surface Andreev bound states which, with the help of theoretical analysis, give evidence for odd-parity pairing and topological superconductivity. The present and previous finding of topological superconductivity in Sn_{1-x}In_{x}Te and CuxBi2Se3 demonstrates that odd-parity pairing favored by strong spin-orbit coupling is a common underlying mechanism for materializing topological superconductivity.
We analyze the evidence of Majorana zero modes in nanowires that came from tunneling spectroscopy and other experiments, and scout the path to topologically protected states that are of interest for quantum computing. We illustrate the importance of the superconductor-semiconductor interface quality and sketch out where further progress in materials science of these interfaces can take us. Finally, we discuss the prospects of observing more exotic non-Abelian anyons based on the same materials platform, and how to make connections to high energy physics.
comments
Fetching comments Fetching comments
Sign in to be able to follow your search criteria
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا