Do you want to publish a course? Click here

Odd-Parity Pairing and Topological Superconductivity in a Strongly Spin-Orbit Coupled Semiconductor

168   0   0.0 ( 0 )
 Added by Yoichi Ando
 Publication date 2012
  fields Physics
and research's language is English




Ask ChatGPT about the research

The existence of topological superconductors preserving time-reversal symmetry was recently predicted, and they are expected to provide a solid-state realization of itinerant massless Majorana fermions and a route to topological quantum computation. Their first concrete example, CuxBi2Se3, was discovered last year, but the search for new materials has so far been hindered by the lack of guiding principle. Here, we report point-contact spectroscopy experiments showing that the low-carrier-density superconductor Sn_{1-x}In_{x}Te is accompanied with surface Andreev bound states which, with the help of theoretical analysis, give evidence for odd-parity pairing and topological superconductivity. The present and previous finding of topological superconductivity in Sn_{1-x}In_{x}Te and CuxBi2Se3 demonstrates that odd-parity pairing favored by strong spin-orbit coupling is a common underlying mechanism for materializing topological superconductivity.



rate research

Read More

Recent experiments reported gate-induced superconductivity in the monolayer 1T$$-WTe$_2$ which is a two-dimensional topological insulator in its normal state [1, 2]. The in-plane upper critical field $B_{c2}$ is found to exceed the conventional Pauli paramagnetic limit $B_p$ by 1-3 times. The enhancement cannot be explained by conventional spin-orbit coupling which vanishes due to inversion symmetry. In this work, we unveil some distinctive superconducting properties of centrosymmetric 1T$$-WTe$_2$ which arise from the coupling of spin, momentum and band parity degrees of freedom. As a result of this spin-orbit-parity coupling: (i) there is a first-order superconductor-metal transition at $B_{c2}$ much higher than the Pauli paramagnetic limit $B_p$, (ii) spin-susceptibility is anisotropic with respect to in-plane directions and results in anisotropic $B_{c2}$ and (iii) the $B_{c2}$ exhibits a strong gate dependence as the spin-orbit-parity coupling is significant only near the topological band crossing points. The importance of SOPC on the topologically nontrivial inter-orbital pairing phase is also discussed. Our theory generally applies to centrosymmetric materials with topological band
Superconducting topological crystalline insulators (TCI) are predicted to host new topological phases protected by crystalline symmetries, but available materials are insufficiently suitable for surface studies. To induce superconductivity at the surface of a prototypical TCI SnTe, we use molecular beam epitaxy to grow a heterostructure of SnTe and a high-Tc superconductor Fe(Te,Se), utilizing a buffer layer to bridge the large lattice mismatch between SnTe and Fe(Te,Se). Using low-temperature scanning tunneling microscopy and spectroscopy, we measure a prominent spectral gap on the surface of SnTe, and demonstrate its superconducting origin by its dependence on temperature and magnetic field. Our work provides a new platform for atomic-scale investigations of emergent topological phenomena in superconducting TCIs.
Since the proposal of monopole Cooper pairing in Ref. [1], considerable research efforts have been dedicated to the study of Copper pair order parameters constrained (or obstructed) by the nontrivial normal-state band topology at Fermi surfaces. In the current work, we propose a new type of topologically obstructed Cooper pairing, which we call Euler obstructed Cooper pairing. The Euler obstructed Cooper pairing widely exists between two Fermi surfaces with nontrivial band topology characterized by nonzero Euler numbers; such Fermi surfaces can exist in the $PT$-protected spinless-Dirac/nodal-line semimetals with negligible spin-orbit coupling, where $PT$ is the space-time inversion symmetry. An Euler obstructed pairing channel must have pairing nodes on the pairing-relevant Fermi surfaces, and the total winding number of the pairing nodes is determined by the sum or difference of the Euler numbers on the Fermi surfaces. In particular, we find that when the normal state is nonmagnetic and the pairing is weak, a sufficiently-dominant Euler obstructed pairing channel with zero total momentum leads to nodal superconductivity. If the Fermi surface splitting is small, the resultant nodal superconductor hosts hinge Majorana zero modes, featuring the first class of higher-order nodal superconductivity originating from the topologically obstructed Cooper pairing. The possible dominance of the Euler obstructed pairing channel near the superconducting transition and the robustness of the hinge Majorana zero modes against disorder are explicitly demonstrated using effective or tight-binding models.
We present an in-depth classification of the topological phases and Majorana fermion (MF) excitations that arise from the bulk interplay between unconventional multiband spin-singlet superconductivity and various magnetic textures. We focus on magnetic texture crystals with a periodically-repeating primitive cell of the helix, whirl, and skyrmion types. Our analysis is relevant for a wide range of layered materials and hybrid devices, and accounts for both strong and weak, as well as crystalline topological phases. We identify a multitude of accessible topological phases which harbor flat, uni- or bi-directional, (quasi-)helical, or chiral MF edge modes. This rich variety of MFs originates from the interplay between topological phases with gapped and nodal bulk energy spectra, with the resulting types of spectra and MFs controlled by the size of the pairing and magnetic gaps.
Bulk superconductivity has been discovered in Tl_{0.6}Bi_{2}Te_{3}, which is derived from the topological insulator Bi2Te3. The superconducting volume fraction of up to 95% (determined from specific heat) with Tc of 2.28 K was observed. The carriers are p-type with the density of ~1.8 x 10^{20} cm^{-3}. Resistive transitions under magnetic fields point to an unconventional temperature dependence of the upper critical field B_{c2}. The crystal structure appears to be unchanged from Bi2Te3 with a shorter c-lattice parameter, which, together with the Rietveld analysis, suggests that Tl ions are incorporated but not intercalated. This material is an interesting candidate of a topological superconductor which may be realized by the strong spin-orbit coupling inherent to topological insulators.
comments
Fetching comments Fetching comments
Sign in to be able to follow your search criteria
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا