Do you want to publish a course? Click here

Analysis on RXTE, INTEGRAL and ROTSE IIId observations of the X-ray Pulsar 4U 1907+09

104   0   0.0 ( 0 )
 Added by S. Cagdas Inam
 Publication date 2012
  fields Physics
and research's language is English
 Authors S. Sahiner




Ask ChatGPT about the research

In this paper we present our recent timing and spectral analysis of the X-ray pulsar 4U 1907+09. Our X-ray data consist of an extended set of RXTE & INTEGRAL observations that were analyzed before ({c{S}}ahiner et al. 2012). From the X-ray observations we extend the pulse period history of the source and obtain a revised orbital distribution of the X-ray dips. Using ROTSE IIId optical observations, we present the long term optical light curve of the source to have an understanding of long term optical behaviour.



rate research

Read More

173 - S. Sahiner METU 2011
We analyse emph{INTEGRAL} (between 2005 October and 2007 November) and emph{RXTE} (between 2007 June and 2011 March) observations of the accretion powered pulsar 4U 1907+09. From emph{INTEGRAL} IBIS-ISGRI and emph{RXTE}-PCA observations, we update pulse period history of the source. We construct power spectrum density of pulse frequencies and find that fluctuations in the pulse frequency derivatives are consistent with the random walk model with a noise strength of $1.27times10^{-21}$ Hz s$^{-2}$. From the X-ray spectral analysis of emph{RXTE}-PCA observations, we find that Hydrogen column density is variable over the binary orbit, tending to increase just after the periastron passage. We also show that the X-ray spectrum gets hardened with decreasing X-ray flux. We discuss pulse-to-pulse variability of the source near dipping ingress and egress. We find that the source more likely undergoes in dipping states after apastron until periastron when the accretion from clumpy wind might dominate so that occasional transitions to temporary propeller state might occur.
We present results from two observations of the wind-accreting X-ray pulsar 4U 1907+09 using the Suzaku observatory. The broadband time-averaged spectrum allows us to examine the continuum emission of the source and the cyclotron resonance scattering feature at ~19 keV. Additionally, using the narrow CCD response of Suzaku near 6 keV allows us to study in detail the Fe K bandpass and to quantify the Fe K beta line for this source for the first time. The source is absorbed by fully-covering material along the line of sight with a column density of NH ~2e22 /cm^2, consistent with a wind accreting geometry, and a high Fe abundance (~3-4 x solar). Time and phase-resolved analyses allow us to study variations in the source spectrum. In particular, dips found in the 2006 observation which are consistent with earlier observations occur in the hard X-ray bandpass, implying a variation of the whole continuum rather than occultation by intervening material, while a dip near the end of the 2007 observation occurs mainly in the lower energies implying an increase in NH along the line of sight, perhaps indicating clumpiness in the stellar wind.
We present a spectral and timing analysis of INTEGRAL observations of two high mass X-ray binaries, 4U 1538-522 and 4U 1907+09. Our timing measurements for 4U 1538-522 find the pulse period to have exhibited a spin-up trend until approximately 2009, after which there is evidence for a torque reversal, with the source beginning to spin down to the most recently-measured period of 525.407 +/- 0.001 s. The most recent INTEGRAL observations of 4U 1907+09 are not found to yield statistically significant pulse periods due to the significantly lower flux from the source compared to 4U 1538-522. A spectral model consisting of a power-law continuum with an exponential cutoff and modified by two cyclotron resonance scattering features is found to fit both sources well, with the cyclotron scattering features detected at ~22 and ~49 keV for 4U 1538-522 and at ~18 and ~36 keV in 4U 1907+09. The spectral parameters of 4U 1538-522 are generally not found to vary significantly with flux, and there is little to no variation across the torque reversal. Examining our results in conjunction with previous work, we find no evidence for a correlation between cyclotron line energy and luminosity for 4U 1538-522. 4U 1907+09 shows evidence for a positive correlation between cyclotron line energy and luminosity, which would make it the fourth, and lowest-luminosity, cyclotron line source to exhibit this relationship
We analyzed RXTE archival observations of 4U 1907+09 between 17 February 1996 and 6 March 2002. The pulse timing analysis showed that the source stayed at almost {bf{constant}} period around August 1998 and then started to spin-down at a rate of $(-1.887mp 0.042)times 10^{-14}$ Hz s$^-1$ which is $sim$ 0.60 times lower than the long term ($sim 15$ years) spin-down rate (Baykal et al. 2001). Our pulse frequency measurements for the first time resolved significant spin-down rate variations since the discovery of the source. We also presented orbital phase resolved X-ray spectra during two stable spin down episodes during November 1996 - December 1997 and March 2001 - March 2002. The source has been known to have two orbitally locked flares. We found that X-ray flux and spectral parameters except Hydrogen column density agreed with each other during the flares.We interpreted the similar values of X-ray fluxes as an indication of the fact that the source accretes not only via transient retrograde accretion disc (int Zand et al. 1998) but also via the stellar wind of the companion (Roberts et al. 2001), so that the variation of the accretion rate from the disc does not cause significant variation in the observed X-ray flux. Lack of significant change in spectral parameters except Hydrogen column density was interpreted as a sign of the fact that the change in the spin-down rate of the source was not accompanied by a significant variation in the accretion geometry.
We report on simultaneous X-ray and radio observations of the radio-mode-switching pulsar PSR B1822-09 with ESAs XMM-Newton and the WSRT, GMRT and Lovell radio telescopes. PSR B1822-09 switches between a radio-bright and radio-quiet mode, and we discovered a relationship between the durations of its modes and a known underlying radio-modulation timescale within the modes. We discovered X-ray (energies 0.2-1.4 keV) pulsations with a broad sinusoidal pulse, slightly lagging the radio main pulse in phase by 0.094 +/- 0.017, with an energy-dependent pulsed fraction varying from ~0.15 at 0.3 keV to ~0.6 at 1 keV. No evidence is found for simultaneous X-ray and radio mode switching. The total X-ray spectrum consists of a cool component (T ~ 0.96 x 10^6 K, hot-spot radius R ~ 2.0 km) and a hot component (T ~ 2.2 x 10^6 K, R ~ 100 m). The hot component can be ascribed to the pulsed emission and the cool component to the unpulsed emission. The high-energy characteristics of PSR B1822-09 resemble those of middle-aged pulsars such as PSR B0656+14, PSR B1055-52 and Geminga, including an indication for pulsed high-energy gamma-ray emission in Fermi LAT data. Explanations for the high pulsed fraction seem to require different temperatures at the two poles of this orthogonal rotator, or magnetic anisotropic beaming effects in its strong magnetic field. In the X-ray skymap we found a harder source at only (5.1+/- 0.5 )arcsec from PSR B1822-09, which might be a pulsar wind nebula.
comments
Fetching comments Fetching comments
Sign in to be able to follow your search criteria
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا