Do you want to publish a course? Click here

Simultaneous X-ray and radio observations of the radio-mode switching pulsar PSR B1822-09

81   0   0.0 ( 0 )
 Publication date 2016
  fields Physics
and research's language is English




Ask ChatGPT about the research

We report on simultaneous X-ray and radio observations of the radio-mode-switching pulsar PSR B1822-09 with ESAs XMM-Newton and the WSRT, GMRT and Lovell radio telescopes. PSR B1822-09 switches between a radio-bright and radio-quiet mode, and we discovered a relationship between the durations of its modes and a known underlying radio-modulation timescale within the modes. We discovered X-ray (energies 0.2-1.4 keV) pulsations with a broad sinusoidal pulse, slightly lagging the radio main pulse in phase by 0.094 +/- 0.017, with an energy-dependent pulsed fraction varying from ~0.15 at 0.3 keV to ~0.6 at 1 keV. No evidence is found for simultaneous X-ray and radio mode switching. The total X-ray spectrum consists of a cool component (T ~ 0.96 x 10^6 K, hot-spot radius R ~ 2.0 km) and a hot component (T ~ 2.2 x 10^6 K, R ~ 100 m). The hot component can be ascribed to the pulsed emission and the cool component to the unpulsed emission. The high-energy characteristics of PSR B1822-09 resemble those of middle-aged pulsars such as PSR B0656+14, PSR B1055-52 and Geminga, including an indication for pulsed high-energy gamma-ray emission in Fermi LAT data. Explanations for the high pulsed fraction seem to require different temperatures at the two poles of this orthogonal rotator, or magnetic anisotropic beaming effects in its strong magnetic field. In the X-ray skymap we found a harder source at only (5.1+/- 0.5 )arcsec from PSR B1822-09, which might be a pulsar wind nebula.



rate research

Read More

Observations obtained in the last years challenged the widespread notion that rotation-powered neutron stars are steady X-ray emitters. Besides a few allegedly rotation-powered neutron stars that showed magnetar-like variability, a particularly interesting case is that of PSR B0943+10. Recent observations have shown that this pulsar, well studied in the radio band where it alternates between a bright and a quiescent mode, displays significant X-ray variations, anticorrelated in flux with the radio emission. The study of such synchronous radio/X-ray mode switching opens a new window to investigate the processes responsible for the pulsar radio and high-energy emission. Here we review the main X-ray properties of PSR B0943+10 derived from recent coordinated X-ray and radio observations.
PSR J1825$-$0935 (PSR B1822$-$09) switches between radio-quiet (Q-mode) and radio-bright (B-mode) modes. The Q-mode is known to have a periodic fluctuation that modulates both the interpulse and the main pulse with the same period. Earlier investigators argued that the periodic Q-mode modulation is associated with drifting subpulses. We report on single-pulse observations of PSR J1825$-$0935 that were made using the Parkes 64-m radio telescope with a central frequency of 1369 MHz. The high-sensitivity observations revealed that the periodic Q-mode modulation is in fact a periodic longitude-stationary intensity modulation occurring in the interpulse and the main pulse. The fluctuation spectral analysis showed that the modulation period is about $43 P_1$, where $P_1$ is the rotation period of the pulsar. Furthermore, we confirm that the modulation patterns in the interpulse and the main pulse are phase-locked. Specifically, the intensities of the interpulse and the immediately following main pulse are more highly correlated than for the main pulse and interpulse at any other lag. Polarization properties of the strong and weak Q-mode states are different, even for the trailing part of the main pulse which does not show the periodic intensity modulation.
We present coordinated Chandra X-ray Observatory and Karl G. Jansky Very Large Array observations of the transitional millisecond pulsar PSR J1023+0038 in its low-luminosity accreting state. The unprecedented five hours of strictly simultaneous X-ray and radio continuum coverage for the first time unambiguously show a highly reproducible, anti-correlated variability pattern. The characteristic switches from the X-ray high mode into a low mode are always accompanied by a radio brightening with duration that closely matches the X-ray low mode interval. This behavior cannot be explained by a canonical inflow/outflow accretion model where the radiated emission and the jet luminosity are powered by, and positively correlated with, the available accretion energy. We interpret this phenomenology as alternating episodes of low-level accretion onto the neutron star during the X-ray high mode that are interrupted by rapid ejections of plasma by the active rotation-powered pulsar, possibly initiated by a reconfiguration of the pulsar magnetosphere, that cause a transition to a less luminous X-ray mode. The observed anti-correlation between radio and X-ray luminosity has an additional consequence: transitional MSPs can make excursions into a region of the radio/X-ray luminosity plane previously thought to be occupied solely by black hole X-ray binary sources. This complicates the use of this luminosity relation to identify candidate black holes, suggesting the need for additional discriminants when attempting to establish the true nature of the accretor.
We report on simultaneous X-ray and radio observations of the mode-switching pulsar PSR B0943+10 obtained with the XMM-Newton satellite and the LOFAR, LWA and Arecibo radio telescopes in November 2014. We confirm the synchronous X-ray/radio switching between a radio-bright (B) and a radio-quiet (Q) mode, in which the X-ray flux is a factor ~2.4 higher than in the B-mode. We discovered X-ray pulsations, with pulsed fraction of 38+/-5% (0.5-2 keV), during the B-mode, and confirm their presence in Q-mode, where the pulsed fraction increases with energy from ~20% up to ~65% at 2 keV. We found marginal evidence for an increase in the X-ray pulsed fraction during B-mode on a timescale of hours. The Q-mode X-ray spectrum requires a fit with a two-component model (either a power-law plus blackbody or the sum of two blackbodies), while the B-mode spectrum is well fit by a single blackbody (a single power-law is rejected). With a maximum likelihood analysis, we found that in Q-mode the pulsed emission has a thermal blackbody spectrum with temperature ~3.4x10^6 K and the unpulsed emission is a power-law with photon index ~2.5, while during B-mode both the pulsed and unpulsed emission can be fit by either a blackbody or a power law with similar values of temperature and photon index. A Chandra image shows no evidence for diffuse X-ray emission. These results support a scenario in which both unpulsed non-thermal emission, likely of magnetospheric origin, and pulsed thermal emission from a small polar cap (~1500 m^2) with a strong non-dipolar magnetic field (~10^{14} G), are present during both radio modes and vary in intensity in a correlated way. This is broadly consistent with the predictions of the partially screened gap model and does not necessarily imply global magnetospheric rearrangements to explain the mode switching.
We undertook coordinated campaigns with the Green Bank, Effelsberg, and Arecibo radio telescopes during Chandra X-ray Observatory and XMM-Newton observations of the repeating fast radio burst FRB 121102 to search for simultaneous radio and X-ray bursts. We find 12 radio bursts from FRB 121102 during 70 ks total of X-ray observations. We detect no X-ray photons at the times of radio bursts from FRB 121102 and further detect no X-ray bursts above the measured background at any time. We place a 5$sigma$ upper limit of $3times10^{-11}$ erg cm$^{-2}$ on the 0.5--10 keV fluence for X-ray bursts at the time of radio bursts for durations $<700$ ms, which corresponds to a burst energy of $4times10^{45}$ erg at the measured distance of FRB 121102. We also place limits on the 0.5--10 keV fluence of $5times10^{-10}$ erg cm$^{-2}$ and $1times10^{-9}$ erg cm$^{-2}$ for bursts emitted at any time during the XMM-Newton and Chandra observations, respectively, assuming a typical X-ray burst duration of 5 ms. We analyze data from the Fermi Gamma-ray Space Telescope Gamma-ray Burst Monitor and place a 5$sigma$ upper limit on the 10--100 keV fluence of $4times10^{-9}$ erg cm$^{-2}$ ($5times10^{47}$ erg at the distance of FRB 121102) for gamma-ray bursts at the time of radio bursts. We also present a deep search for a persistent X-ray source using all of the X-ray observations taken to date and place a 5$sigma$ upper limit on the 0.5--10 keV flux of $4times10^{-15}$ erg s$^{-1}$ cm$^{-2}$ ($3times10^{41}$ erg~s$^{-1}$ at the distance of FRB 121102). We discuss these non-detections in the context of the host environment of FRB 121102 and of possible sources of fast radio bursts in general.
comments
Fetching comments Fetching comments
Sign in to be able to follow your search criteria
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا