Do you want to publish a course? Click here

The C(X)-algebra of a net and index theory

139   0   0.0 ( 0 )
 Added by Ezio Vasselli
 Publication date 2012
  fields Physics
and research's language is English




Ask ChatGPT about the research

Given a connected and locally compact Hausdorff space X with a good base K we assign, in a functorial way, a C(X)-algebra to any precosheaf of C*-algebras A defined over K. Afterwards we consider the representation theory and the Kasparov K-homology of A, and interpret them in terms, respectively, of the representation theory and the K-homology of the associated C(X)-algebra. When A is an observable net over the spacetime X in the sense of algebraic quantum field theory, this yields a geometric description of the recently discovered representations affected by the topology of X.



rate research

Read More

Let X be a space, intended as a possibly curved spacetime, and A a precosheaf of C*-algebras on X. Motivated by algebraic quantum field theory, we study the Kasparov and Theta-summable K-homology of A interpreting them in terms of the holonomy equivariant K-homology of the associated C*-dynamical system. This yields a characteristic class for K-homology cycles of A with values in the odd cohomology of X, that we interpret as a generalized statistical dimension.
163 - Diane Martinez , Jody Trout 2001
We study the relationship between POV-measures in quantum theory and asymptotic morphisms in the operator algebra E-theory of Connes-Higson. This is done by introducing the theory of asymptotic PV-measures and their integral correspondence with positive asymptotic morphisms on locally compact spaces. Examples and applications involving various aspects of quantum physics, including quantum noise models, semiclassical limits, strong deformation quantizations, and pure half-spin particles, are also discussed.
In the first part of this paper, we give a new look at inclusions of von Neumann algebras with finite-dimensional centers and finite Jones index. The minimal conditional expectation is characterized by means of a canonical state on the relative commutant, that we call the spherical state; the minimal index is neither additive nor multiplicative (it is submultiplicative), contrary to the subfactor case. So we introduce a matrix dimension with the good functorial properties: it is always additive and multiplicative. The minimal index turns out to be the square of the norm of the matrix dimension, as was known in the multi-matrix inclusion case. In the second part, we show how our results are valid in a purely 2-$C^*$-categorical context, in particular they can be formulated in the framework of Connes bimodules over von Neumann algebras.
A Banach involutive algebra is called a Krein C*-algebra if there is a fundamental symmetry (an involutive automorphism of period 2) such that the C*-property is satisfied when the original involution is replaced with the new one obtained by composing the automorphism with the old involution. For a given fundamental symmetry, a Krein C*-algebra decomposes as a direct sum of an even part (a C*-algebra) and an odd part (a Hilbert C*-bimodule on the even part). Our goal here is to develop a spectral theory for commutative unital Krein C*-algebras when the odd part is a symmetric imprimitivity C*-bimodule over the even part and there exists an additional suitable exchange symmetry between the odd and even parts.
We construct a new class of finite-dimensional C^*-quantum groupoids at roots of unity q=e^{ipi/ell}, with limit the discrete dual of the classical SU(N) for large orders. The representation category of our groupoid turns out to be tensor equivalent to the well known quotient C^*-category of the category of tilting modules of the non-semisimple quantum group U_q({mathfrak sl}_N) of Drinfeld, Jimbo and Lusztig. As an algebra, the C^*-groupoid is a quotient of U_q({mathfrak sl}_N). As a coalgebra, it naturally reflects the categorical quotient construction. In particular, it is not coassociative, but satisfies axioms of the weak quasi-Hopf C^*-algebras: quasi-coassociativity and non-unitality of the coproduct. There are also a multiplicative counit, an antipode, and an R-matrix. For this, we give a general construction of quantum groupoids for complex simple Lie algebras {mathfrak g} eq E_8 and certain roots of unity. Our main tools here are Drinfelds coboundary associated to the R-matrix, related to the algebra involution, and certain canonical projections introduced by Wenzl, which yield the coproduct and Drinfelds associator in an explicit way. Tensorial properties of the negligible modules reflect in a rather special nature of the associator. We next reduce the proof of the categorical equivalence to the problems of establishing semisimplicity and computing dimension of the groupoid. In the case {mathfrak g}={mathfrak sl}_N we construct a (non-positive) Haar-type functional on an associative version of the dual groupoid satisfying key non-degeneracy properties. This enables us to complete the proof.
comments
Fetching comments Fetching comments
Sign in to be able to follow your search criteria
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا