We study the effects of the Born-Infeld electrodynamics on the holographic superconductors in the background of a Schwarzschild AdS black hole spacetime. We find that the presence of Born-Infeld scale parameter decreases the critical temperature and the ratio of the gap frequency in conductivity to the critical temperature for the condensates. Our results means that it is harder for the scalar condensation to form in the Born-Infeld electrodynamics.
We studied holographic insulator/superconductor phase transition in the framework of Born-Infeld electrodynamics both numerically and analytically. First we numerically study the effects of the Born-Infeld electrodynamics on the phase transition, find that the critical chemical potential is not changed by the Born-Infeld parameter. Then we employ the variational method for the Sturm-Liouville eigenvalue problem to analytically study the phase transition. The analytical results obtained are found to be consistent with the numerical results.
The phenomenon of spontaneous scalarization of Reissner-Nordstr{o}m (RN) black holes has recently been found in an Einstein-Maxwell-scalar (EMS) model due to a non-minimal coupling between the scalar and Maxwell fields. Non-linear electrodynamics, e.g., Born-Infeld (BI) electrodynamics, generalizes Maxwells theory in the strong field regime. Non-minimally coupling the BI field to the scalar field, we study spontaneous scalarization of an Einstein-Born-Infeld-scalar (EBIS) model in this paper. It shows that there are two types of scalarized black hole solutions, i.e., scalarized RN-like and Schwarzschild-like solutions. Although the behavior of scalarized RN-like solutions in the EBIS model is quite similar to that of scalarize solutions in the EMS model, we find that there exist significant differences between scalarized Schwarzschild-like solutions in the EBIS model and scalarized solutions in the EMS model. In particular, the domain of existence of scalarized Schwarzschild-like solutions possesses a certain region, which is composed of two branches. The branch of larger horizon area is a family of disconnected scalarized solutions, which do not bifurcate from scalar-free black holes. However, the branch of smaller horizon area may or may not bifurcate from scalar-free black holes depending on the parameters. Additionally, these two branches of scalarized solutions can be both entropically disfavored over comparable scalar-free black holes in some parameter region.
We investigate the scalar perturbation of the inflation model driven by a massive-scalar field in Eddington-inspired Born-Infeld gravity. We focus on the perturbation at the attractor stage in which the first and the second slow-roll conditions are satisfied. The scalar perturbation exhibits the corrections to the chaotic inflation model in general relativity. We find that the tensor-to-scalar ratio becomes smaller than that of the usual chaotic inflation.
We construct an axially symmetric solution of Eddington-inspired Born-Infeld gravity coupled to an electromagnetic field in 2+1 dimensions including a (negative) cosmological constant term. This is achieved by using a recently developed mapping procedure that allows to generate solutions in certain families of metric-affine gravity theories starting from a known seed solution of General Relativity, which in the present case corresponds to the electrically charged Banados-Teitelboim-Zanelli (BTZ) solution. We discuss the main features of the new configurations, including the modifications to the ergospheres and horizons, the emergence of wormhole structures, and the consequences for the regularity (or not) of these space-times via geodesic completeness.
We obtain (2+1) dimensional p-wave holographic superconductors from charged Born-Infeld black holes in the presence of massive charged vector fields in a bulk $AdS_4$ Einstein-Born-Infeld theory through the $AdS_4$-$CFT_3$ correspondence. Below a certain critical transition temperature the charged black hole develops vector hair that corresponds to charged vector condensate in the strongly coupled (2+1) dimensional boundary field theory that breaks both the $U(1)$ symmetry as well as the rotational invariance. The holographic free energy is computed for the boundary field theory which shows that the vector order parameter exhibits a rich phase structure involving zeroth order, first order, second order and retrograde phase transitions for different values of the backreaction and the Born-Infeld parameters. We numerically compute the ac conductivity for the p-wave superconducting phase of the strongly coupled (2+1) dimensional boundary field theory which also depends on the relative values of the parameters in the theory.