Do you want to publish a course? Click here

Molecular Gas Kinematics and Line Diagnostics in Early-type Galaxies: NGC4710 and NGC5866

65   0   0.0 ( 0 )
 Added by Selcuk Topal
 Publication date 2016
  fields Physics
and research's language is English




Ask ChatGPT about the research

We present interferometric observations of CO lines (12CO(1-0, 2-1) and 13CO(1-0, 2-1)) and dense gas tracers (HCN(1-0), HCO+(1-0), HNC(1-0) and HNCO(4-3)) in two nearby edge-on barred lenticular galaxies, NGC 4710 and NGC 5866, with most of the gas concentrated in a nuclear disc and an inner ring in each galaxy. We probe the physical conditions of a two-component molecular interstellar medium in each galaxy and each kinematic component by using molecular line ratio diagnostics in three complementary ways. First, we measure the ratios of the position-velocity diagrams of different lines, second we measure the ratios of each kinematic components integrated line intensities as a function of projected position, and third we model these line ratios using a non-local thermodynamic equilibrium radiative transfer code. Overall, the nuclear discs appear to have a tenuous molecular gas component that is hotter, optically thinner and with a larger dense gas fraction than that in the inner rings, suggesting more dense clumps immersed in a hotter more diffuse molecular medium. This is consistent with evidence that the physical conditions in the nuclear discs are similar to those in photo-dissociation regions. A similar picture emerges when comparing the observed molecular line ratios with those of other galaxy types. The physical conditions of the molecular gas in the nuclear discs of NGC4710 and NGC5866 thus appear intermediate between those of spiral galaxies and starbursts, while the star formation in their inner rings is even milder.



rate research

Read More

The morphological, spectroscopic and kinematical properties of the warm interstellar medium (wim) in early-type galaxies (ETGs) hold key observational constraints to nuclear activity and the buildup history of these massive, quiescent systems. High-quality integral field spectroscopy (IFS) data with a wide spectral and spatial coverage, such as those from the CALIFA survey, offer an unprecedented opportunity for advancing our understanding of the wim in ETGs. This article centers on a 2D investigation of the wim component in 32 nearby (<~150Mpc) ETGs from CALIFA, complementing a previous 1D analysis of the same sample (Papaderos et al. 2013; P13). We include here Halpha intensity and equivalent width (EW) maps and radial profiles, diagnostic emission-line ratios, besides ionized-gas and stellar kinematics. This study is supplemented by tau-ratio maps as an efficient means to quantify the role of photoionization by pAGB stars, as compared to other mechanisms (e.g., AGN, low-level star formation). Additionally, we extend the tentative classification proposed in P13 by the type i+, which is assigned to a subset of type i ETGs exhibiting ongoing low-level star-formation (SF) in their periphery. This finding along with faint traces of localized SF in the extranuclear component of several of our sample ETGs points to a non-negligible contribution by OB stars to the total ionizing budget. We also demonstrate that, at the typical emission-line detection threshold of ~2AA in previous studies, most of the extranuclear wim emission in an ETG may evade detection, which could in turn prompt its classification as an entirely gas-devoid system. This study adds further observational evidence for a considerable heterogeneity among ETGs with regard to the physical properties and 2D kinematics of the wim component, and underscores the importance of IFS studies over their entire optical extent.
139 - M. Krips , A.F.Crocker , M. Bureau 2010
In a pilot project to study the relationship between star formation and molecular gas properties in nearby normal early-type galaxies, we used the IRAM 30m telescope to observe the 13CO(J=1-0), 13CO(J=2-1), HCN(J=1-0) and HCO+(J=1-0) line emission in the four galaxies of the SAURON sample with the strongest 12CO emission. We report the detection of 13CO emission in all four SAURON sources and HCN emission in three sources, while no HCO+ emission was found to our detection limits in any of the four galaxies. We find that the 13CO/12CO ratios of three SAURON galaxies are somewhat higher than those in galaxies of different Hubble types. The HCN/12CO and HCN/13CO ratios of all four SAURON galaxies resemble those of nearby Seyfert and dwarf galaxies with normal star formation rates, rather than those of starburst galaxies. The HCN/HCO+ ratio is found to be relatively high (i.e., >1) in the three SAURON galaxies with detected HCN emission, mimicking the behaviour in other star-forming galaxies but being higher than in starburst galaxies. When compared to most galaxies, it thus appears that 13CO is enhanced (relative to 12CO) in three out of four SAURON galaxies and HCO+ is weak (relative to HCN) in three out of three galaxies. All three galaxies detected in HCN follow the standard HCN-infrared luminosity and dense gas fraction-star formation efficiency correlations. As already suggested by 12CO observations, when traced by infrared radiation, star formation in the three SAURON galaxies thus appears to follow the same physical laws as in galaxies of different Hubble types. The star formation rate and fraction of dense molecular gas however do not reach the high values found in nearby starburst galaxies, but rather resemble those of nearby normal star-forming galaxies.
The molecular gas content of local early-type galaxies is constrained and discussed in relation to their evolution. First, as part of the Atlas3D survey, we present the first complete, large (260 objects), volume-limited single-dish survey of CO in normal local early-type galaxies. We find a surprisingly high detection rate of 22%, independent of luminosity and at best weakly dependent on environment. Second, the extent of the molecular gas is constrained with CO synthesis imaging, and a variety of morphologies is revealed. The kinematics of the molecular gas and stars are often misaligned, implying an external gas origin in over a third of the systems, although this behaviour is drastically diffferent between field and cluster environments. Third, many objects appear to be in the process of forming regular kpc-size decoupled disks, and a star formation sequence can be sketched by piecing together multi-wavelength information on the molecular gas, current star formation, and young stars. Last, early-type galaxies do not seem to systematically obey all our usual prejudices regarding star formation, following the standard Schmidt-Kennicutt law but not the far infrared-radio correlation. This may suggest a greater diversity in star formation processes than observed in disk galaxies. Using multiple molecular tracers, we are thus starting to probe the physical conditions of the cold gas in early-types.
We here present the first spatially-resolved study of the IMF in external galaxies derived using a dynamical tracer of the mass-to-light ratio. We use the kinematics of relaxed molecular gas discs in seven early-type galaxies (ETGs) selected from the ATLAS3D survey to dynamically determine mass-to-light ratio (M/L) gradients. These M/L gradients are not very strong in the inner parts of these objects, and galaxies that do show variations are those with the highest specific star formation rates. Stellar population parameters derived from star formation histories are then used in order to estimate the stellar initial mass function function (IMF) mismatch parameter, and shed light on its variation within ETGs. Some of our target objects require a light IMF, otherwise their stellar population masses would be greater than their dynamical masses. In contrast, other systems seem to require heavier IMFs to explain their gas kinematics. Our analysis again confirms that IMF variation seems to be occurring within massive ETGs. We find good agreement between our IMF normalisations derived using molecular gas kinematics and those derived using other techniques. Despite this, we do not see find any correlation between the IMF normalisation and galaxy dynamical properties or stellar population parameters, either locally or globally. In the future larger studies which use molecules as tracers of galaxy dynamics can be used to help us disentangle the root cause of IMF variation.
108 - Ranieri D. Baldi 2014
Aims. We want to study the amount of molecular gas in a sample of nearby early-type galaxies (ETGs) which host low-luminosity Active Galactic Nuclei (AGN). We look for possible differences between the radio-loud (RL) and radio-quiet (RQ) AGN. Methods. We observed the CO(1-0) and CO(2-1) spectral lines with the IRAM 30m and NRO 45m telescopes for eight galaxies. They belong to a large sample of 37 local ETGs which host both RQ and RL AGN. We gather data from the literature for the entire sample. Results. We report the new detection of CO(1-0) emission in four galaxies (UGC0968, UGC5617, UGC6946, and UGC8355) and CO(2-1) emission in two of them (UGC0968 and UGC5617). The CO(2-1)/CO(1-0) ratio in these sources is $sim0.7pm0.2$. Considering both the new observations and the literature, the detection rate of CO in our sample is 55 $pm$ 9%, with no statistically significant difference between the hosts of RL and RQ AGNs. For all the detected galaxies we converted the CO luminosities into the molecular masses, $M_{H_2}$, that range from 10$^{6.5}$ to 10$^{8.5}$ M$_{odot}$, without any statistically significant differences between RL and RQ galaxies. This suggests that the amount of molecular gas does not likely set the radio-loudness of the AGN. Furthermore, despite the low statistical significance, the presence of a weak trend between the H$_{2}$ mass with various tracers of nuclear activity (mainly [O III] emission line nuclear power) cannot be excluded.
comments
Fetching comments Fetching comments
Sign in to be able to follow your search criteria
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا