Do you want to publish a course? Click here

Antiferromagnetic Spatial Ordering in a Quenched One-dimensional Spinor Gas

127   0   0.0 ( 0 )
 Added by Chandra Raman
 Publication date 2012
  fields Physics
and research's language is English




Ask ChatGPT about the research

We have experimentally observed the emergence of spontaneous antiferromagnetic spatial order in a sodium spinor Bose-Einstein condensate that was quenched through a magnetic phase transition. For negative values of the quadratic Zeeman shift, a gas initially prepared in the F = 1, mF = 0 state collapsed into a dynamically evolving superposition of all 3 spin projections, mF = 0, +/-1. The quench gave rise to rich, nonequilibrium behavior where both nematic and magnetic spin waves were generated. We characterized the spatiotemporal evolution through two particle correlations between atoms in each pair of spin states. These revealed dramatic differences between the dynamics of the spin correlations and those of the spin populations.



rate research

Read More

We observe the joint spin-spatial (spinor) self-organization of a two-component BEC strongly coupled to an optical cavity. This unusual nonequilibrium Hepp-Lieb-Dicke phase transition is driven by an off-resonant two-photon Raman transition formed from a classical pump field and the emergent quantum dynamical cavity field. This mediates a spinor-spinor interaction that, above a critical strength, simultaneously organizes opposite spinor states of the BEC on opposite checkerboard configurations of an emergent 2D lattice. The resulting spinor density-wave polariton condensate is observed by directly detecting the atomic spin and momentum state and by holographically reconstructing the phase of the emitted cavity field. The latter provides a direct measure of the spin state, and a spin-spatial domain wall is observed. The photon-mediated spin interactions demonstrated here may be engineered to create dynamical gauge fields and quantum spin glasses.
Dynamical fermionization refers to the phenomenon in Tonks-Girardeau (TG) gases where, upon release from harmonic confinement, the gass momentum density profile evolves asymptotically to that of an ideal Fermi gas in the initial trap. This phenomenon has been demonstrated theoretically in hardcore and anyonic TG gases, and recently experimentally observed in a strongly interacting Bose gas. We extend this study to a one dimensional (1D) spinor gas of arbitrary spin in the strongly interacting regime, and analytically prove that the total momentum distribution after the harmonic trap is turned off approaches that of a spinless ideal Fermi gas, while the asymptotic momentum distribution of each spin component takes the same shape of the initial real space density profile of that spin component. Our work demonstrates the rich physics arising from the interplay between the spin and the charge degrees of freedom in a spinor system.
We simulate a balanced attractively interacting two-component Fermi gas in a one-dimensional lattice perturbed with a moving potential well or barrier. Using the time-evolving block decimation method, we study different velocities of the perturbation and distinguish two velocity regimes based on clear differences in the time evolution of particle densities and the pair correlation function. We show that, in the slow regime, the densities deform as particles are either attracted by the potential well or repelled by the barrier, and a wave front of hole or particle excitations propagates at the maximum group velocity. Simultaneously, the initial pair correlations are broken and coherence over different sites is lost. In contrast, in the fast regime, the densities are not considerably deformed and the pair correlations are preserved.
We experimentally study the dynamics of a degenerate one-dimensional Bose gas that is subject to a continuous outcoupling of atoms. Although standard evaporative cooling is rendered ineffective by the absence of thermalizing collisions in this system, we observe substantial cooling. This cooling proceeds through homogeneous particle dissipation and many-body dephasing, enabling the preparation of otherwise unexpectedly low temperatures. Our observations establish a scaling relation between temperature and particle number, and provide insights into equilibration in the quantum world.
Large spin systems can exhibit unconventional types of magnetic ordering different from the ferromagnetic or Neel-like antiferromagnetic order commonly found in spin 1/2 systems. Spin-nematic phases, for instance, do not break time-reversal invariance and their magnetic order parameter is characterized by a second rank tensor with the symmetry of an ellipsoid. Here we show direct experimental evidence for spin-nematic ordering in a spin-1 Bose-Einstein condensate of sodium atoms with antiferromagnetic interactions. In a mean field description this order is enforced by locking the relative phase between spin components. We reveal this mechanism by studying the spin noise after a spin rotation, which is shown to contain information hidden when looking only at averages. The method should be applicable to high spin systems in order to reveal complex magnetic phases.
comments
Fetching comments Fetching comments
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا