No Arabic abstract
We investigate the two-dimensional (2D) highly spin-polarized electron accumulation layers commonly appearing near the surface of n-type polar semiconductors BiTeX (X = I, Br, and Cl) by angular-resolved photoemission spectroscopy. Due to the polarity and the strong spin-orbit interaction built in the bulk atomic configurations, the quantized conduction-band subbands show giant Rashba-type spin-splitting. The characteristic 2D confinement effect is clearly observed also in the valence-bands down to the binding energy of 4 eV. The X-dependent Rashba spin-orbit coupling is directly estimated from the observed spin-split subbands, which roughly scales with the inverse of the band-gap size in BiTeX.
The predictions of the polar catastrophe scenario to explain the occurrence of a metallic interface in heterostructures of the solid solution(LaAlO$_3$)$_{x}$(SrTiO$_3$)$_{1-x}$ (LASTO:x) grown on (001) SrTiO$_3$ were investigated as a function of film thickness and $x$. The films are insulating for the thinnest layers, but above a critical thickness, $t_c$, the interface exhibits a constant finite conductivity which depends in a predictable manner on $x$. It is shown that $t_c$ scales with the strength of the built-in electric field of the polar material, and is immediately understandable in terms of an electronic reconstruction at the nonpolar-polar interface. These results thus conclusively identify the polar-catastrophe model as the intrinsic origin of the doping at this polar oxide interface.
We demonstrate the formation of a two-dimensional electron gas (2DEG) at the $(100)$ surface of the $5d$ transition-metal oxide KTaO$_3$. From angle-resolved photoemission, we find that quantum confinement lifts the orbital degeneracy of the bulk band structure and leads to a 2DEG composed of ladders of subband states of both light and heavy carriers. Despite the strong spin-orbit coupling, our measurements provide a direct upper bound for potential Rashba spin splitting of only $Delta{k}_parallelsim0.02$ AA$^{-1}$ at the Fermi level. The polar nature of the KTaO$_3(100)$ surface appears to help mediate formation of the 2DEG as compared to non-polar SrTiO$_3(100)$.
The spin texture of the metallic two-dimensional electron system (root3 x root3)-Au/Ge(111) is revealed by fully three-dimensional spin-resolved photoemission, as well as by density functional calculations. The large hexagonal Fermi surface, generated by the Au atoms, shows a significant splitting due to spin-orbit interactions. The planar components of the spin exhibit helical character, accompanied by a strong out-of-plane spin component with alternating signs along the six Fermi surface sections. Moreover, in-plane spin rotations towards a radial direction are observed close to the hexagon corners. Such a threefold-symmetric spin pattern is not described by the conventional Rashba model. Instead, it reveals an interplay with Dresselhaus-like spin-orbit effects as a result of the crystalline anisotropies.
Considering the quantum dynamics of 2DEG exposed to both a stationary magnetic field and an intense high-frequency electromagnetic wave, we found that the wave decreases the scattering-induced broadening of Landau levels. Therefore, various magnetoelectronic properties of two-dimensional nanostructures (density of electronic states at Landau levels, magnetotransport, etc) are sensitive to the irradiation by light. Thus, the elaborated theory paves a way to optical controlling magnetic properties of 2DEG.
We use microscopic linear response theory to derive a set of equations that provide a complete description of coupled spin and charge diffusive transport in a two-dimensional electron gas (2DEG) with the Rashba spin-orbit (SO) interaction. These equations capture a number of interrelated effects including spin accumulation and diffusion, Dyakonov-Perel spin relaxation, magnetoelectric, and spin-galvanic effects. They can be used under very general circumstances to model transport experiments in 2DEG systems that involve either electrical or optical spin injection. We comment on the relationship between these equations and the exact spin and charge density operator equations of motion. As an example of the application of our equations, we consider a simple electrical spin injection experiment and show that a voltage will develop between two ferromagnetic contacts if a spin-polarized current is injected into a 2DEG, that depends on the relative magnetization orientation of the contacts. This voltage is present even when the separation between the contacts is larger than the spin diffusion length.