No Arabic abstract
We show that, in a broad class of continuous time random walks (CTRW), a small external field can turn diffusion from standard into anomalous. We illustrate our findings in a CTRW with trapping, a prototype of subdiffusion in disordered and glassy materials, and in the Levy walk process, which describes superdiffusion within inhomogeneous media. For both models, in the presence of an external field, rare events induce a singular behavior in the originally Gaussian displacements distribution, giving rise to power-law tails. Remarkably, in the subdiffusive CTRW, the combined effect of highly fluctuating waiting times and of a drift yields a non-Gaussian distribution characterized by long spatial tails and strong anomalous superdiffusion.
We study the distribution of the minimum free energy (MFE) for the Turner model of pseudoknot free RNA secondary structures over ensembles of random RNA sequences. In particular, we are interested in those rare and intermediate events of unexpected low MFEs. Generalized ensemble Markov-chain Monte Carlo methods allow us to explore the rare-event tail of the MFE distribution down to probabilities like $10^{-70}$ and to study the relationship between the sequence entropy and structural properties for sequence ensembles with fixed MFEs. Entropic and structural properties of those ensembles are compared with natural RNA of the same reduced MFE (z-score).
Magnetic field-driven domain wall motion in an ultrathin Pt/Co(0.45nm)/Pt ferromagnetic film with perpendicular anisotropy is studied over a wide temperature range. Three different pinning dependent dynamical regimes are clearly identified: the creep, the thermally assisted flux flow and the depinning, as well as their corresponding crossovers. The wall elastic energy and microscopic parameters characterizing the pinning are determined. Both the extracted thermal rounding exponent at the depinning transition, $psi=$0.15, and the Larkin length crossover exponent, $phi=$0.24, fit well with the numerical predictions.
Repeated local measurements of quantum many body systems can induce a phase transition in their entanglement structure. These measurement-induced phase transitions (MIPTs) have been studied for various types of dynamics, yet most cases yield quantitatively similar values of the critical exponents, making it unclear if there is only one underlying universality class. Here, we directly probe the properties of the conformal field theories governing these MIPTs using a numerical transfer-matrix method, which allows us to extract the effective central charge, as well as the first few low-lying scaling dimensions of operators at these critical points. Our results provide convincing evidence that the generic and Clifford MIPTs for qubits lie in different universality classes and that both are distinct from the percolation transition for qudits in the limit of large onsite Hilbert space dimension. For the generic case, we find strong evidence of multifractal scaling of correlation functions at the critical point, reflected in a continuous spectrum of scaling dimensions.
We numerically study the effect of short ranged potential disorder on massless noninteracting three-dimensional Dirac and Weyl fermions, with a focus on the question of the proposed quantum critical point separating the semimetal and diffusive metal phases. We determine the properties of the eigenstates of the disordered Dirac Hamiltonian ($H$) and exactly calculate the density of states (DOS) near zero energy, using a combination of Lanczos on $H^2$ and the kernel polynomial method on $H$. We establish the existence of two distinct types of low energy eigenstates contributing to the disordered density of states in the weak disorder semimetal regime. These are (i) typical eigenstates that are well described by linearly dispersing perturbatively dressed Dirac states, and (ii) nonperturbative rare eigenstates that are weakly-dispersive and quasi-localized in the real space regions with the largest (and rarest) local random potential. Using twisted boundary conditions, we are able to systematically find and study these two types of eigenstates. We find that the Dirac states contribute low energy peaks in the finite-size DOS that arise from the clean eigenstates which shift and broaden in the presence of disorder. On the other hand, we establish that the rare quasi-localized eigenstates contribute a nonzero background DOS which is only weakly energy-dependent near zero energy and is exponentially small at weak disorder. We find that the expected semimetal to diffusive metal quantum critical point is converted to an {it avoided} quantum criticality that is rounded out by nonperturbative effects, with no signs of any singular behavior in the DOS near the Dirac energy. We discuss the implications of our results for disordered Dirac and Weyl semimetals, and reconcile the large body of existing numerical work showing quantum criticality with the existence of the rare region effects.
We study the effect of strong disorder on topology and entanglement in quench dynamics. Although disorder-induced topological phases have been well studied in equilibrium, the disorder-induced topology in quench dynamics has not been explored. In this work, we predict a disorder-induced topology of post-quench states characterized by the quantized dynamical Chern number and the crossings in the entanglement spectrum in $(1+1)$ dimensions. The dynamical Chern number undergoes transitions from zero to unity, and back to zero when increasing the disorder strength. The boundaries between different dynamical Chern numbers are determined by delocalized critical points in the post-quench Hamiltonian with the strong disorder. An experimental realization in quantum walks is discussed.