No Arabic abstract
Repeated local measurements of quantum many body systems can induce a phase transition in their entanglement structure. These measurement-induced phase transitions (MIPTs) have been studied for various types of dynamics, yet most cases yield quantitatively similar values of the critical exponents, making it unclear if there is only one underlying universality class. Here, we directly probe the properties of the conformal field theories governing these MIPTs using a numerical transfer-matrix method, which allows us to extract the effective central charge, as well as the first few low-lying scaling dimensions of operators at these critical points. Our results provide convincing evidence that the generic and Clifford MIPTs for qubits lie in different universality classes and that both are distinct from the percolation transition for qudits in the limit of large onsite Hilbert space dimension. For the generic case, we find strong evidence of multifractal scaling of correlation functions at the critical point, reflected in a continuous spectrum of scaling dimensions.
Quantum phase transitions are usually observed in ground states of correlated systems. Remarkably, eigenstate phase transitions can also occur at finite energy density in disordered, isolated quantum systems. Such transitions fall outside the framework of statistical mechanics as they involve the breakdown of ergodicity. Here, we consider what general constraints can be imposed on the nature of eigenstate transitions due to the presence of disorder. We derive Harris-type bounds on the finite-size scaling exponents of the mean entanglement entropy and level statistics at the many-body localization phase transition using several different arguments. Our results are at odds with recent small-size numerics, for which we estimate the crossover scales beyond which the Harris bound must hold.
We numerically investigate the structure of many-body wave functions of 1D random quantum circuits with local measurements employing the participation entropies. The leading term in system size dependence of participation entropies indicates a multifractal scaling of the wave-functions at any non-zero measurement rate. The sub-leading term contains universal information about measurement--induced phase transitions and plays the role of an order parameter, being non-zero in the error-correcting phase and vanishing in the quantum Zeno phase. We provide an analytical interpretation of this behavior expressing the participation entropy in terms of partition functions of classical statistical models in 2D.
We numerically study the measurement-driven quantum phase transition of Haar-random quantum circuits in $1+1$ dimensions. By analyzing the tripartite mutual information we are able to make a precise estimate of the critical measurement rate $p_c = 0.17(1)$. We extract estimates for the associated bulk critical exponents that are consistent with the values for percolation, as well as those for stabilizer circuits, but differ from previous estimates for the Haar-random case. Our estimates of the surface order parameter exponent appear different from that for stabilizer circuits or percolation, but we are unable to definitively rule out the scenario where all exponents in the three cases match. Moreover, in the Haar case the prefactor for the entanglement entropies $S_n$ depends strongly on the Renyi index $n$; for stabilizer circuits and percolation this dependence is absent. Results on stabilizer circuits are used to guide our study and identify measures with weak finite-size effects. We discuss how our numerical estimates constrain theories of the transition.
Spectral statistics of disordered systems encode Thouless and Heisenberg time scales whose ratio determines whether the system is chaotic or localized. Identifying similarities between system size and disorder strength scaling of Thouless time for disordered quantum many-body systems with results for 3D and 5D Anderson models, we argue that the two-parameter scaling breaks down in the vicinity of the transition to the localized phase signalling subdiffusive dynamics.
We explore the stability of three-dimensional Weyl and Dirac semimetals subject to quasiperiodic potentials. We present numerical evidence that the semimetal is stable for weak quasiperiodic potentials, despite being unstable for weak random potentials. As the quasiperiodic potential strength increases, the semimetal transitions to a metal, then to an inverted semimetal, and then finally to a metal again. The semimetal and metal are distinguished by the density of states at the Weyl point, as well as by level statistics, transport, and the momentum-space structure of eigenstates near the Weyl point. The critical properties of the transitions in quasiperiodic systems differ from those in random systems: we do not find a clear critical scaling regime in energy; instead, at the quasiperiodic transitions, the density of states appears to jump abruptly (and discontinuously to within our resolution).