Do you want to publish a course? Click here

Structures for pairs of mock modular forms with the Zagier duality

118   0   0.0 ( 0 )
 Added by Subong Lim
 Publication date 2012
  fields
and research's language is English




Ask ChatGPT about the research

Zagier introduced special bases for weakly holomorphic modular forms to give the new proof of Borcherds theorem on the infinite product expansions of integer weight modular forms on $SL_2(ZZ)$ with a Heegner divisor. These good bases appear in pairs, and they satisfy a striking duality, which is now called the Zagier duality. After the result of Zagier, this type duality was studied broadly in various view points including the theory of a mock modular form. In this paper, we consider this problem with the Eichler cohomology theory, especially the supplementary function theory developed by Knopp. Using holomorphic Poincare series and their supplementary functions, we construct a pair of families of vector-valued harmonic weak Maass forms satisfying the Zagier duality with integer weights $-k$ and $k+2$ respectively, $k>0$, for a $H$-group. We also investigate the structures of them such as the images under the differential operators $D^{k+1}$ and $xi_{-k}$ and quadric relations of the critical values of their $L$-functions.



rate research

Read More

185 - Yichao Zhang 2013
In this note, we generalize the isomorphisms to the case when the discriminant form is not necessarily induced from real quadratic fields. In particular, this general setting includes all the subspaces with epsilon-conditions, only two spacial cases of which were treated before. With this established, we shall prove the Zagier duality for canonical bases. Finally, we raise a question on the integrality of the Fourier coefficients of these bases elements, or equivalently we concern the existence of a Miller-like basis for vector valued modular forms.
Ramanujan studied the analytic properties of many $q$-hypergeometric series. Of those, mock theta functions have been particularly intriguing, and by work of Zwegers, we now know how these curious $q$-series fit into the theory of automorphic forms. The analytic theory of partial theta functions however, which have $q$-expansions resembling modular theta functions, is not well understood. Here we consider families of $q$-hypergeometric series which converge in two disjoint domains. In one domain, we show that these series are often equal to one another, and define mock theta functions, including the classical mock theta functions of Ramanujan, as well as certain combinatorial generating functions, as special cases. In the other domain, we prove that these series are typically not equal to one another, but instead are related by partial theta functions.
192 - Yichao Zhang 2017
We establish an isomorphism between certain complex-valued and vector-valued modular form spaces of half-integral weight, generalizing the well-known isomorphism between modular forms for $Gamma_0(4)$ with Kohnens plus condition and modular forms for the Weil representation associated to the discriminant form for the lattice with Gram matrix $(2)$. With such an isomorphism, we prove the Zagier duality and write down the Borcherds lifts explicitly.
147 - Yichao Zhang 2013
In this note, we consider discriminant forms that are given by the norm form of real quadratic fields and their induced Weil representations. We prove that there exists an isomorphism between the space of vector-valued modular forms for the Weil representations that are invariant under the action of the automorphism group and the space of scalar-valued modular forms that satisfy some epsilon-condition, with which we translate Borcherdss theorem of obstructions to scalar-valued modular forms. In the end, we consider an example in the case of level 12.
91 - Rufei Ren , Bin Zhao 2020
Let $F$ be a totally real field and $p$ be an odd prime which splits completely in $F$. We prove that the eigenvariety associated to a definite quaternion algebra over $F$ satisfies the following property: over a boundary annulus of the weight space, the eigenvariety is a disjoint union of countably infinitely many connected components which are finite over the weight space; on each fixed connected component, the ratios between the $U_mathfrak{p}$-slopes of points and the $p$-adic valuations of the $mathfrak{p}$-parameters are bounded by explicit numbers, for all primes $mathfrak{p}$ of $F$ over $p$. Applying Hansens $p$-adic interpolation theorem, we are able to transfer our results to Hilbert modular eigenvarieties. In particular, we prove that on every irreducible component of Hilbert modular eigenvarieties, as a point moves towards the boundary, its $U_p$ slope goes to zero. In the case of eigencurves, this completes the proof of Coleman-Mazurs `halo conjecture.
comments
Fetching comments Fetching comments
Sign in to be able to follow your search criteria
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا