Do you want to publish a course? Click here

Stability of extended defects on boron nitride and graphene monolayers: the role of chemical environment

183   0   0.0 ( 0 )
 Added by Ricardo W. Nunes
 Publication date 2012
  fields Physics
and research's language is English




Ask ChatGPT about the research

We perform ab initio calculations that indicate that the relative stability of antiphase boundaries (APB) with armchair and zigzag chiralities in monolayer boron nitride (BN) is determined by the chemical potentials of the boron and nitrogen species in the synthesis process. In an N-rich environment, a zigzag APB with N-rich core is the most stable structure, while under B-rich or intrinsic growth conditions, an armchair APB with stoichiometric core is the most stable. This stability transition is shown to arise from a competition between homopolar-bond (B-B and N-N) and elastic energy costs in the core of the APBs. Moreover, in the presence of a carbon source we find that a carbon-doped zigzag APB becomes the most stable boundary near the N-rich limit. The electronic structure of the two types of APBs in BN is shown to be particularly distinct, with the zigzag APB depicting defect-like deep electronic bands in the band gap, while the armchair APB shows bulk-like shallow electronic bands.



rate research

Read More

Chemical vapor deposited (CVD) graphene is often presented as a scalable solution to graphene device fabrication, but to date such graphene has exhibited lower mobility than that produced by exfoliation. Using a boron nitride underlayer, we achieve mobilities as high as 37,000 cm^2/Vs, an order of magnitude higher than commonly reported for CVD graphene and better than most exfoliated graphene. This result demonstrates that the barrier to scalable, high mobility CVD graphene is not the growth technique but rather the choice of a substrate that minimizes carrier scattering.
Elemental phosphorous is believed to have several stable allotropes that are energetically nearly degenerate, but chemically reactive. To prevent chemical degradation under ambient conditions, these structures may be capped by monolayers of hexagonal boron nitride ({em h}-BN) or graphene. We perform {em ab initio} density functional calculations to simulate scanning tunneling microscopy (STM) images of different layered allotropes of phosphorus and study the effect of capping layers on these images. We find that protective monolayers of insulating {em h}-BN allow to distinguish between the different structural phases of phosphorus underneath, even though the images are filtered through only nitrogen atoms that appear transparent. No such distinction is possible for phosphorus films capped by semimetallic graphene that masks the underlying structure. Our results suggest that the real-space imaging capability of STM is not hindered by selected capping layers that protect phosphorus surfaces.
145 - Sohee Park , Changwon Park , 2014
Among two-dimensional atomic crystals, hexagonal boron nitride (hBN) is one of the most remarkable materials to fabricate heterostructures revealing unusual properties. We perform first-principles calculations to determine whether intercalated metal atoms and vacancies can mediate interfacial coupling and influence the structural and electronic properties of the graphene/hBN heterostructure. Metal impurity atoms (Li, K, Cr, Mn, Co, and Cu) as extrinsic defects between the graphene and hBN sheets produce $n$-doped graphene. We also consider intrinsic vacancy defects and find that a boron monovacancy in hBN act as a magnetic dopant for graphene whereas a nitrogen monovacancy in hBN serves as a nonmagnetic dopant for graphene. In contrast, smallest triangular vacancy defects in hBN are unlikely to result in significant changes in the electronic transport of graphene. Our findings reveal that the hBN layer with some vacancies or metal impurities enhance the interlayer coupling in the graphene/hBN heterostructure with respect to charge doping and electron scattering.
We investigate the adsorption of graphene sheets on h-BN substrates by means of first-principles calculations in the framework of adiabatic connection fluctuation-dissipation theory in the random phase approximation. We obtain adhesion energies for different crystallographic stacking configurations and show that the interlayer bonding is due to long-range van der Waals forces. The interplay of elastic and adhesion energies is shown to lead to stacking disorder and moire structures. Band structure calculations reveal substrate induced mass terms in graphene which change their sign with the stacking configuration. The dispersion, absolute band gaps and the real space shape of the low energy electronic states in the moire structures are discussed. We find that the absolute band gaps in the moire structures are at least an order of magnitude smaller than the maximum local values of the mass term. Our results are in agreement with recent STM experiments.
We performed calculations of electronic, optical and transport properties of graphene on hBN with realistic moire patterns. The latter are produced by structural relaxation using a fully atomistic model. This relaxation turns out to be crucially important for electronic properties. We describe experimentally observed features such as additional Dirac points and the Hofstadter butterfly structure of energy levels in a magnetic field. We find that the electronic structure is sensitive to many-body renormalization of the local energy gap.
comments
Fetching comments Fetching comments
Sign in to be able to follow your search criteria
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا