No Arabic abstract
Chemical vapor deposited (CVD) graphene is often presented as a scalable solution to graphene device fabrication, but to date such graphene has exhibited lower mobility than that produced by exfoliation. Using a boron nitride underlayer, we achieve mobilities as high as 37,000 cm^2/Vs, an order of magnitude higher than commonly reported for CVD graphene and better than most exfoliated graphene. This result demonstrates that the barrier to scalable, high mobility CVD graphene is not the growth technique but rather the choice of a substrate that minimizes carrier scattering.
We report high room-temperature mobility in single layer graphene grown by Chemical Vapor Deposition (CVD) after wet transfer on SiO$_2$ and hexagonal boron nitride (hBN) encapsulation. By removing contaminations trapped at the interfaces between single-crystal graphene and hBN, we achieve mobilities up to$sim70000cm^2 V^{-1} s^{-1}$ at room temperature and$sim120000cm^2 V^{-1} s^{-1}$ at 9K. These are over twice those of previous wet transferred graphene and comparable to samples prepared by dry transfer. We also investigate the combined approach of thermal annealing and encapsulation in polycrystalline graphene, achieving room temperature mobilities$sim30000 cm^2 V^{-1} s^{-1}$. These results show that, with appropriate encapsulation and cleaning, room temperature mobilities well above $10000cm^2 V^{-1} s^{-1}$ can be obtained in samples grown by CVD and transferred using a conventional, easily scalable PMMA-based wet approach.
We investigate the adsorption of graphene sheets on h-BN substrates by means of first-principles calculations in the framework of adiabatic connection fluctuation-dissipation theory in the random phase approximation. We obtain adhesion energies for different crystallographic stacking configurations and show that the interlayer bonding is due to long-range van der Waals forces. The interplay of elastic and adhesion energies is shown to lead to stacking disorder and moire structures. Band structure calculations reveal substrate induced mass terms in graphene which change their sign with the stacking configuration. The dispersion, absolute band gaps and the real space shape of the low energy electronic states in the moire structures are discussed. We find that the absolute band gaps in the moire structures are at least an order of magnitude smaller than the maximum local values of the mass term. Our results are in agreement with recent STM experiments.
Large-area two-dimensional (2D) materials for technical applications can now be produced by chemical vapor deposition (CVD). Unfortunately, grain boundaries (GBs) are ubiquitously introduced as a result of the coalescence of grains with different crystallographic orientations. It is well known that the properties of materials largely depend on GB structures. Here, we carried out a systematic study on the GB structures in CVD-grown polycrystalline h-BN monolayer films by transmission electron microscope. Interestingly, most of these GBs are revealed to be formed via overlapping between neighboring grains, which are distinct from the covalently bonded GBs as commonly observed in other 2D materials. Further density functional theory (DFT) calculations show that the hydrogen plays an essential role in overlapping GB formation. This work provides an in-depth understanding of the microstructures and formation mechanisms of GBs in CVD-grown h-BN films, which should be informative in guiding the precisely controlled synthesis of large area single crystalline h-BN and other 2D materials.
Graphene is a material with enormous potential for numerous applications. Therefore, significant efforts are dedicated to large-scale graphene production using a chemical vapor deposition (CVD) technique. In addition, research is directed at developing methods to incorporate graphene in established production technologies and process flows. In this paper, we present a brief review of available CVD methods for graphene synthesis. We also discuss scalable methods to transfer graphene onto desired substrates. Finally, we discuss potential applications that would benefit from a fully scaled, semiconductor technology compatible production process.
Graphene/hexagonal boron nitride (G/$h$-BN) heterostructures offer an excellent platform for developing nanoelectronic devices and for exploring correlated states in graphene under modulation by a periodic superlattice potential. Here, we report on transport measurements of nearly $0^{circ}$-twisted G/$h$-BN heterostructures. The heterostructures investigated are prepared by dry transfer and thermally annealing processes and are in the low mobility regime (approximately $3000~mathrm{cm}^{2}mathrm{V}^{-1}mathrm{s}^{-1}$ at 1.9 K). The replica Dirac spectra and Hofstadter butterfly spectra are observed on the hole transport side, but not on the electron transport side, of the heterostructures. We associate the observed electron-hole asymmetry to the presences of a large difference between the opened gaps in the conduction and valence bands and a strong enhancement in the interband contribution to the conductivity on the electron transport side in the low-mobility G/$h$-BN heterostructures. We also show that the gaps opened at the central Dirac point and the hole-branch secondary Dirac point are large, suggesting the presence of strong graphene-substrate interaction and electron-electron interaction in our G/$h$-BN heterostructures. Our results provide additional helpful insight into the transport mechanism in G/$h$-BN heterostructures.