Do you want to publish a course? Click here

Cosmic R-string, R-tube and Vacuum Instability

151   0   0.0 ( 0 )
 Added by Yutaka Ookouchi
 Publication date 2012
  fields
and research's language is English




Ask ChatGPT about the research

We show that a cosmic string associated with spontaneous $U(1)_R$ symmetry breaking gives a constraint for supersymmetric model building. In some models, the string can be viewed as a tube-like domain wall with a winding number interpolating a false vacuum and a true vacuum. Such string causes inhomogeneous decay of the false vacuum to the true vacuum via rapid expansion of the radius of the tube and hence its formation would be inconsistent with the present Universe. However, we demonstrate that there exist metastable solutions which do not expand rapidly. Furthermore, when the true vacua are degenerate, the structure inside the tube becomes involved. As an example, we show a bamboo-like solution, which suggests a possibility observing an information of true vacua from outside of the tube through the shape and the tension of the tube.

rate research

Read More

We study stabilization of an unstable cosmic string associated with spontaneously broken $U(1)_R$ symmetry, which otherwise causes a dangerous roll-over process. We demonstrate that in a gauge mediation model, messengers can receive enough corrections from the thermal plasma of the supersymmetric standard model particles to stabilize the unstable modes of the string.
We study the instability of the Higgs vacuum caused by a cloud of strings. By catalysis, the decay rate of the vacuum is highly enhanced and, when the energy density of the cloud is larger than the critical value, a semi-classical vacuum decay occurs. We also discuss the relation between the string cloud and observational constraints on the cosmic strings from the viewpoint of the catalysis, which are converted into bounds on the parameters of the Higgs potential.
We study radiation of supersymmetric particles from an Aharonov-Bohm string associated with a discrete R-symmetry. Radiation of the lightest supersymmetric particle, when combined with the observed dark matter density, imposes constraints on the string tension or the freeze-out temperature of the particle. We also calculate the amplitude for Aharonov-Bohm radiation of massive spin $3/2$ particles.
67 - Jihn E. Kim 2021
The strategy for assigning $Z_{4R}$ parity in the string compactification is presented. For the visible sector, an anti-SU(5) (flipped-SU(5)) grand unification (GUT) model with three families is used to reduce the number of representations compared to the number in the minimal supersymmetric standard models (MSSMs). The SO(32) heterotic string is used to allow a large nonabelian gauge group SU($N$), $Nge 9$, for the hidden sector such that the number of extra U(1) factors is small. A discrete subgroup of the gauge U(1)s is defined as the $Z_{4R}$ parity. Spontaneous symmetry breaking of anti-SU(5) GUT is achieved by the vacuum expectation values of two index antisymmetric tensor Higgs fields ${bf 10}_{+1}$ and $overline{bf 10}_{-1}$ that led to our word `anti-SU(5). In the illustrated example, the multiplicity 3 in one twisted sector allows the permutation symmetry $S_3$ that leads us to select the third family members and one MSSM pair of the Higgs quintets.
We construct a supersymmetric standard model in the context of the Z_{12-I} orbifold compactification of the E_8 x E_8 heterotic string theory. The gauge group is SU(3)_c x SU(2)_L x U(1)_Y x U(1)^4 x [SO(10) x U(1)^3] with sin^2theta_W = 3/8. We obtain three families of SO(10) spinor-like chiral matter states, and Higgs doublets. All other extra states are exactly vector-like under the standard model gauge symmetry. There are numerous standard model singlets, many of which get VEVs such that only the standard model gauge symmetry survives and desired Yukawa couplings can be generated at lower energies. In particular, all vector-like exotic states achieve superheavy masses and the R-parity can be preserved.
comments
Fetching comments Fetching comments
Sign in to be able to follow your search criteria
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا