Do you want to publish a course? Click here

The $p(gamma,K^+)Lambda$ reaction: consistent high-spin interactions and Bayesian inference of its resonance content

240   0   0.0 ( 0 )
 Added by Tom Vrancx
 Publication date 2012
  fields
and research's language is English




Ask ChatGPT about the research

A Bayesian analysis of the worlds $p(gamma,K^+)Lambda$ data is presented. We adopt a Regge-plus-resonance framework featuring consistent interactions for nucleon resonances up to spin $J = 5/2$. The power of the momentum dependence of the consistent interaction structure rises with the spin of the resonance. This leads to unphysical structures in the energy dependence of the computed cross sections when the short-distance physics is cut off with standard hadronic form factors. A plausible, spin-dependent modification of the hadronic form factor is proposed which suppresses the unphysical artifacts. Next, we evaluate all possible combinations of 11 candidate resonances. The best model is selected from the 2048 model variants by calculating the Bayesian evidence values against the worlds $p(gamma,K^+)Lambda$ data. From the proposed selection of 11 resonances, we find that the following nucleon resonances have the highest probability of contributing to the reaction: $S_{11}(1535)$, $S_{11}(1650)$, $F_{15}(1680)$, $P_{13}(1720)$, $D_{13}(1900)$, $P_{13}(1900)$, $P_{11}(1900)$, and $F_{15}(2000)$.



rate research

Read More

A Bayesian analysis of the worlds p(gamma,K+)Lambda data is presented. We adopt a Regge-plus-resonance framework featuring consistent couplings for nucleon resonances up to spin J=5/2, and evaluate 2048 model variants considering all possible combinations of 11 candidate resonances. The best model, labeled RPR-2011, is discussed with special emphasis on nucleon resonances in the 1900-MeV mass region.
A Bayesian analysis of the worlds p(gamma,K^+)Lambda data is presented. From the proposed selection of 11 resonances, we find that the following nucleon resonances have the highest probability of contributing to the reaction: S11(1535), S11(1650), F15(1680), P13(1720), D13(1900), P13(1900), P11(1900), and F15(2000). We adopt a Regge-plus-resonance framework featuring consistent couplings for nucleon resonances up to spin J=5/2. We evaluate all possible combinations of 11 candidate resonances. The best model is selected from the 2048 model variants by calculating the Bayesian evidence values against the worlds p(gamma,K^+)Lambda data.
We present calculations of the invariant mass spectra of the $Lambda$p system for the exclusive $p p to K^+ Lambda p$ reaction with the aim of studying the final state interaction between the $Lambda$-hyperon and the proton. The reaction is described within a meson exchange framework and the final state $Lambda p$ interaction is incorporated through an off-shell t-matrix for the $Lambda p to Lambda p$ scattering, constructed using the available hyperon-nucleon (YN) potentials. The cross sections are found to be sensitive to the type of YN potential used especially at the $Lambda$ and $Sigma$ production thresholds. Hence, data on this exclusive reaction, which can be used to constrain the YN potentials are desirable.
The reaction pp -> K+ + (Lambda p) was measured at Tp=1.953 GeV and Theta = 0 deg with a high missing mass resolution in order to study the Lambda p final state interaction. The large final state enhancement near the Lambda p threshold can be described using the standard Jost-function approach. The singlet and triplet scattering lengths and effective ranges are deduced by fitting simultaneously the Lambda p invariant mass spectrum and the total cross section data of the free Lambda p scattering.
The reaction $gamma pto K^+Lambda$ has been investigated over the center-of-momentum energy, $W$, range from threshold up to 2.2 GeV in a tree-level effective Lagrangian model that incorporates most of the well-established baryon resonances with spins equal to or below 5/2. Four less well-established nucleon resonances of higher mass are also included. The fitted parameters consist, for each resonance included, of the products of the coupling strengths at the electromagnetic and strong interaction vertices and, for the less-established nucleon resonances, the total decay width. For the well-established nucleon resonances, the energy and momentum dependence of the widths is treated within a dynamical model that is normalized to give the empirical decay branching ratios on the resonance mass shells. For the less-established resonances, the total decay width is treated as a single parameter independent of the reaction kinematics. The model is used to fit recent data for the unpolarized differential cross section (CLAS), the induced hyperon polarization asymmetry, $P$ (CLAS, GRAAL, and SAPHIR), the beam spin asymmetry, $Sigma$ (LEPS), and the double polarization observables $C_x$ and $C_z$ (CLAS). Two different fits were obtained: one that incorporates SU(3) symmetry constraints on the Born contributions to the reaction amplitude and one in which these constraints are relaxed. Explicit numerical results are given only for the first fit since the two fits gave nearly identical results for the observables and the $chi^2$ per degree of freedom obtained with the second fit was only marginally better than that of the first fit ($<1%$ better). Results are presented for the fitted observables at several different energies and center-of-momentum (c.m.) frame kaon angles.
comments
Fetching comments Fetching comments
Sign in to be able to follow your search criteria
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا