No Arabic abstract
In many practical applications of supervised learning the task involves the prediction of multiple target variables from a common set of input variables. When the prediction targets are binary the task is called multi-label classification, while when the targets are continuous the task is called multi-target regression. In both tasks, target variables often exhibit statistical dependencies and exploiting them in order to improve predictive accuracy is a core challenge. A family of multi-label classification methods address this challenge by building a separate model for each target on an expanded input space where other targets are treated as additional input variables. Despite the success of these methods in the multi-label classification domain, their applicability and effectiveness in multi-target regression has not been studied until now. In this paper, we introduce two new methods for multi-target regression, called Stacked Single-Target and Ensemble of Regressor Chains, by adapting two popular multi-label classification methods of this family. Furthermore, we highlight an inherent problem of these methods - a discrepancy of the values of the additional input variables between training and prediction - and develop extensions that use out-of-sample estimates of the target variables during training in order to tackle this problem. The results of an extensive experimental evaluation carried out on a large and diverse collection of datasets show that, when the discrepancy is appropriately mitigated, the proposed methods attain consistent improvements over the independent regressions baseline. Moreover, t
Multi-target regression is concerned with the prediction of multiple continuous target variables using a shared set of predictors. Two key challenges in multi-target regression are: (a) modelling target dependencies and (b) scalability to large output spaces. In this paper, a new multi-target regression method is proposed that tries to jointly address these challenges via a novel problem transformation approach. The proposed method, called MRQ, is based on the idea of quantizing the output space in order to transform the multiple continuous targets into one or more discrete ones. Learning on the transformed output space naturally enables modeling of target dependencies while the quantization strategy can be flexibly parameterized to control the trade-off between prediction accuracy and computational efficiency. Experiments on a large collection of benchmark datasets show that MRQ is both highly scalable and also competitive with the state-of-the-art in terms of accuracy. In particular, an ensemble version of MRQ obtains the best overall accuracy, while being an order of magnitude faster than the runner up method.
Multi-target regression is concerned with the simultaneous prediction of multiple continuous target variables based on the same set of input variables. It arises in several interesting industrial and environmental application domains, such as ecological modelling and energy forecasting. This paper presents an ensemble method for multi-target regression that constructs new target variables via random linear combinations of existing targets. We discuss the connection of our approach with multi-label classification algorithms, in particular RA$k$EL, which originally inspired this work, and a family of recent multi-label classification algorithms that involve output coding. Experimental results on 12 multi-target datasets show that it performs significantly better than a strong baseline that learns a single model for each target using gradient boosting and compares favourably to multi-objective random forest approach, which is a state-of-the-art approach. The experiments further show that our approach improves more when stronger unconditional dependencies exist among the targets.
Multi-instance learning attempts to learn from a training set consisting of labeled bags each containing many unlabeled instances. Previous studies typically treat the instances in the bags as independently and identically distributed. However, the instances in a bag are rarely independent, and therefore a better performance can be expected if the instances are treated in an non-i.i.d. way that exploits the relations among instances. In this paper, we propose a simple yet effective multi-instance learning method, which regards each bag as a graph and uses a specific kernel to distinguish the graphs by considering the features of the nodes as well as the features of the edges that convey some relations among instances. The effectiveness of the proposed method is validated by experiments.
Tree-based ensemble methods, as Random Forests and Gradient Boosted Trees, have been successfully used for regression in many applications and research studies. Furthermore, these methods have been extended in order to deal with uncertainty in the output variable, using for example a quantile loss in Random Forests (Meinshausen, 2006). To the best of our knowledge, no extension has been provided yet for dealing with uncertainties in the input variables, even though such uncertainties are common in practical situations. We propose here such an extension by showing how standard regression trees optimizing a quadratic loss can be adapted and learned while taking into account the uncertainties in the inputs. By doing so, one no longer assumes that an observation lies into a single region of the regression tree, but rather that it belongs to each region with a certain probability. Experiments conducted on several data sets illustrate the good behavior of the proposed extension.
We propose a new approach to increase inference performance in environments that require a specific sequence of actions in order to be solved. This is for example the case for maze environments where ideally an optimal path is determined. Instead of learning a policy for a single step, we want to learn a policy that can predict n actions in advance. Our proposed method called policy horizon regression (PHR) uses knowledge of the environment sampled by A2C to learn an n dimensional policy vector in a policy distillation setup which yields n sequential actions per observation. We test our method on the MiniGrid and Pong environments and show drastic speedup during inference time by successfully predicting sequences of actions on a single observation.