No Arabic abstract
A plane poset is a finite set with two partial orders, satisfying a certain incompatibility condition. The set PP of isoclasses of plane posets owns two products, and an infinitesimal Hopf algebra structure is defined on the vector space H_PP generated by PP, using the notion of biideals of plane posets. We here define a partial order on PP, making it isomorphic to the set of partitions with the weak Bruhat order. We prove that this order is compatible with both products of PP; moreover, it encodes a non degenerate Hopf pairing on the infinitesimal Hopf algebra H_PP.
Let $(W,S)$ be a finite Weyl group and let $win W$. It is widely appreciated that the descent set D(w)={sin S | l(ws)<l(w)} determines a very large and important chapter in the study of Coxeter groups. In this paper we generalize some of those results to the situation of the Bruhat poset $W^J$ where $Jsubseteq S$. Our main results here include the identification of a certain subset $S^Jsubseteq W^J$ that convincingly plays the role of $Ssubseteq W$, at least from the point of view of descent sets and related geometry. The point here is to use this resulting {em descent system} $(W^J,S^J)$ to explicitly encode some of the geometry and combinatorics that is intrinsic to the poset $W^J$. In particular, we arrive at the notion of an {em augmented poset}, and we identify the {em combinatorially smooth} subsets $Jsubseteq S$ that have special geometric significance in terms of a certain corresponding torus embedding $X(J)$. The theory of $mathscr{J}$-irreducible monoids provides an essential tool in arriving at our main results.
The rook monoid $R_n$ is the finite monoid whose elements are the 0-1 matrices with at most one nonzero entry in each row and column. The group of invertible elements of $R_n$ is isomorphic to the symmetric group $S_n$. The natural extension to $R_n$ of the Bruhat-Chevalley ordering on the symmetric group is defined in cite{Renner86}. In this paper, we find an efficient, combinatorial description of the Bruhat-Chevalley ordering on $R_n$. We also give a useful, combinatorial formula for the length function on $R_n$.
Toric posets are cyclic analogues of finite posets. They can be viewed combinatorially as equivalence classes of acyclic orientations generated by converting sources into sinks, or geometrically as chambers of toric graphic hyperplane arrangements. In this paper we study toric intervals, morphisms, and order ideals, and we provide a connection to cyclic reducibility and conjugacy in Coxeter groups.
Let $H$ be a finite dimensional semisimple Hopf algebra, $A$ a differential graded (dg for short) $H$-module algebra. Then the smash product algebra $A#H$ is a dg algebra. For any dg $A#H$-module $M$, there is a quasi-isomorphism of dg algebras: $mathrm{RHom}_A(M,M)#Hlongrightarrow mathrm{RHom}_{A#H}(Mot H,Mot H)$. This result is applied to $d$-Koszul algebras, Calabi-Yau algebras and AS-Gorenstein dg algebras
We discuss the theory of certain partially ordered sets that capture the structure of commutation classes of words in monoids. As a first application, it follows readily that counting words in commutation classes is #P-complete. We then apply the partially ordered sets to Coxeter groups. Some results are a proof that enumerating the reduced words of elements of Coxeter groups is #P-complete, a recursive formula for computing the number of commutation classes of reduced words, as well as stronger bounds on the maximum number of commutation classes than were previously known. This also allows us to improve the known bounds on the number of primitive sorting networks.