No Arabic abstract
The three Upsilon states, Upsilon(1S+2S+3S), are measured in d+Au and p+p collisions at sqrt(s_NN)=200 GeV and rapidities 1.2<|y|<2.2 by the PHENIX experiment at the Relativistic Heavy-Ion Collider. Cross sections for the inclusive Upsilon(1S+2S+3S) production are obtained. The inclusive yields per binary collision for d+Au collisions relative to those in p+p collisions (R_dAu) are found to be 0.62 +/- 0.26 (stat) +/- 0.13 (syst) in the gold-going direction and 0.91 +/- 0.33 (stat) +/- 0.16 (syst) in the deuteron-going direction. The measured results are compared to a nuclear-shadowing model, EPS09 [JHEP 04, 065 (2009)], combined with a final-state breakup cross section, sigma_br, and compared to lower energy p+A results. We also compare the results to the PHENIX J/psi results [Phys. Rev. Lett. 107, 142301 (2011)]. The rapidity dependence of the observed Upsilon suppression is consistent with lower energy p+A measurements.
Measurements of bottomonium production in heavy ion and $p$$+$$p$ collisions at the Relativistic Heavy Ion Collider (RHIC) are presented. The inclusive yield of the three $Upsilon$ states, $Upsilon(1S+2S+3S)$, was measured in the PHENIX experiment via electron-positron decay pairs at midrapidity for Au$+$Au and $p$$+$$p$ collisions at $sqrt{s_{_{NN}}}=200$ GeV. The $Upsilon(1S+2S+3S)rightarrow e^+e^-$ differential cross section at midrapidity was found to be $B_{rm ee} dsigma/dy =$ 108 $pm$ 38 (stat) $pm$ 15(syst) $pm$ 11 (luminosity) pb in $p$$+$$p$ collisions. The nuclear modification factor in the 30% most central Au$+$Au collisions indicates a suppression of the total $Upsilon$ state yield relative to the extrapolation from $p$$+$$p$ collision data. The suppression is consistent with measurements made by STAR at RHIC and at higher energies by the CMS experiment at the Large Hadron Collider.
The PHENIX experiment has measured direct photons at $sqrt{s_{NN}}$ = 200 GeV in $p+p$, $d$+Au and Au+Au collisions. For $p_{T}$ $<$ 4 GeV/$c$, the internal conversion into $e^{+}e^{-}$ pairs has been used to measure the direct photons in Au+Au.
We report measurements of Upsilon meson production in p+p, d+Au, and Au+Au collisions using the STAR detector at RHIC. We compare the Upsilon yield to the measured cross section in p+p collisions in order to quantify any modifications of the yield in cold nuclear matter using d+Au data and in hot nuclear matter using Au+Au data separated into three centrality classes. Our p+p measurement is based on three times the statistics of our previous result. We obtain a nuclear modification factor for Upsilon(1S+2S+3S) in the rapidity range |y|<1 in d+Au collisions of R_dAu = 0.79 +/- 0.24 (stat.) +/- 0.03 (sys.) +/- 0.10 (pp sys.). A comparison with models including shadowing and initial state parton energy loss indicates the presence of additional cold-nuclear matter suppression. Similarly, in the top 10% most-central Au+Au collisions, we measure a nuclear modification factor of R_AA=0.49 +/- 0.1 (stat.) +/- 0.02 (sys.) +/- 0.06 (pp sys.), which is a larger suppression factor than that seen in cold nuclear matter. Our results are consistent with complete suppression of excited-state Upsilon mesons in Au+Au collisions. The additional suppression in Au+Au is consistent with the level expected in model calculations that include the presence of a hot, deconfined Quark-Gluon Plasma. However, understanding the suppression seen in d+Au is still needed before any definitive statements about the nature of the suppression in Au+Au can be made.
The PHENIX experiment at the Relativistic Heavy Ion Collider (RHIC) has measured omega meson production via leptonic and hadronic decay channels in p+p, d+Au, Cu+Cu, and Au+Au collisions at sqrt(s_NN) = 200 GeV. The invariant transverse momentum spectra measured in different decay modes give consistent results. Measurements in the hadronic decay channel in Cu+Cu and Au+Au collisions show that omega production has a suppression pattern at high transverse momentum, similar to that of pi^0 and eta in central collisions, but no suppression is observed in peripheral collisions. The nuclear modification factors, R_AA, are consistent in Cu+Cu and Au+Au collisions at similar numbers of participant nucleons.
The PHENIX experiment has measured electrons and positrons at midrapidity from the decays of hadrons containing charm and bottom quarks produced in d+Au and p+p collisions at sqrt(s_NN)=200 GeV at the Relativistic Heavy Ion Collider, in the transverse-momentum range 0.85 < pT < 8.5 GeV/c. In central d+Au collisions, the nuclear modification factor R_dA at 1.5 < pT < 5 GeV/c displays evidence of enhancement of these electrons, relative to those produced in p+p collisions, and shows that the mass-dependent Cronin enhancement observed at RHIC extends to the heavy-D-meson family. A comparison with the neutral-pion data suggests that the difference in cold-nuclear-matter effects on light- and heavy-flavor mesons could contribute to the observed differences between the pi0 and heavy-flavor-electron nuclear modification factor R_AA.