Do you want to publish a course? Click here

Quantum Hall effect in multilayered massless Dirac fermion systems with tilted cones

143   0   0.0 ( 0 )
 Added by Naoya Tajima
 Publication date 2012
  fields Physics
and research's language is English




Ask ChatGPT about the research

We report the first observation of Shubnikov-de Haas (SdH) oscillations and quantized Hall resistance in the multilayered massless Dirac fermion system $alpha$-(BEDT-TTF)$_2$I$_3$ with tilted cones. Holes were injected into the thin crystal fixed on a polyethylene naphthalate (PEN) substrate by contact electrification. The detection of SdH oscillations whose phase was modified by Berrys phase $pi$ strongly suggested that the carrier doping was successful in this system. We succeeded in detecting the quantum Hall effect (QHE) with the steps which is the essence of two dimensional Dirac fermion systems. The number of effectively doped layers was examined to be two in this device. We reveal that the correlation between effective layers plays an important role in QHE.

rate research

Read More

135 - N. Tajima , M. Sato , S. Sugawara 2010
The inter-layer magnetoresistance in a multilayered massless Dirac fermion system, $alpha$-(BEDT-TTF)$_2$I$_3$, under hydrostatic pressure was investigated. We succeeded in detecting the zero-mode (n=0) Landau level and its spin splitting in the magnetic field normal to the 2D plane. We demonstrated that the effective Coulomb interaction in the magnetic field intensifies the spin splitting of zero-mode Landau carriers. At temperatures below 2K, magnetic fields above several Tesla break the twofold valley degeneracy.
Employing the quantum Liouville equation with phenomenological dissipation, we investigate the transport properties of massless and massive Dirac fermion systems that mimics graphene and topological insulators, respectively. The massless Dirac fermion system does not show an intrinsic Hall effect, but it shows a Hall current under the presence of circularly-polarized laser fields as a nature of a optically-driven nonequilibrium state. Based on the microscopic analysis, we find that the light-induced Hall effect mainly originates from the imbalance of photocarrier distribution in momentum space although the emergent Floquet-Berry curvature also has a non-zero contribution. We further compute the Hall transport property of the massive Dirac fermion system with an intrinsic Hall effect in order to investigate the interplay of the intrinsic topological contribution and the extrinsic light-induced population contribution. As a result, we find that the contribution from the photocarrier population imbalance becomes significant in the strong field regime and it overcomes the intrinsic contribution. This finding clearly demonstrates that intrinsic transport properties of materials can be overwritten by external driving and may open a way to ultrafast optical-control of transport properties of materials.
We theoretically study unattenuated electromagnetic guided wave modes in centrosymmetric Weyl semimetal layered systems. By solving Maxwells equations for the electromagnetic fields and using the appropriate boundary conditions, we derive dispersion relations for propagating modes in a finite-sized Weyl semimetal. Our findings reveal that for ultrathin structures, and proper Weyl cones tilts, extremely localized guided waves can propagate along the semimetal interface over a certain range of frequencies. This follows from the anisotropic nature of the semimetal where the diagonal components of the permittivity can exhibit a tunable epsilon-near-zero response. From the dispersion diagrams, we determine experimentally accessible regimes that lead to high energy-density confinement in the Weyl semimetal layer. Furthermore, we show that the net system power can vanish all together, depending on the Weyl cone tilt and frequency of the electromagnetic wave.These effects are seen in the energy transport velocity, which demonstrates a substantial slowdown in the propagation of electromagnetic energy near critical points of the dispersion diagrams. Our results can provide guidelines in designing Weyl semimetal waveguides that can offer efficient control in the velocity and direction of energy flow.
198 - N. Tajima , S. Sugawara , R. Kato 2009
We report on the experimental results of interlayer magnetoresistance in multilayer massless Dirac fermion system $alpha$-(BEDT-TTF)$_2$I$_3$ under hydrostatic pressure and its interpretation. We succeeded in detecting the zero-mode Landau level (n=0 Landau level) that is epected to appear at the contact points of Dirac cones in the magnetic field normal to the two-dimensional plane. The characteristic feature of zero-mode Landau carriers including the Zeeman effect is clearly seen in the interlayer magnetoresistance.
The opening of a gap in single-layer graphene is often ascribed to the breaking of the equivalence between the two carbon sublattices. We show by angle-resolved photoemission spectroscopy that Ir- and Na-modified graphene grown on the Ir(111) surface presents a very large unconventional gap that can be described in terms of a phenomenological massless Dirac model. We discuss the consequences and differences of this model in comparison of the standard massive gap model, and we investigate the conditions under which such anomalous gap can arise from a spontaneous symmetry breaking.
comments
Fetching comments Fetching comments
Sign in to be able to follow your search criteria
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا