Do you want to publish a course? Click here

About the two spin-channel model for ferromagnetic excitations and spin-dependent heat transfer equations

173   0   0.0 ( 0 )
 Added by Jean-Eric Wegrowe
 Publication date 2012
  fields Physics
and research's language is English
 Authors J.-E. Wegrowe




Ask ChatGPT about the research

The two spin-channel model is generalized to the case of transport of ferromagnetic excitations in electric conductors and insulators. The two channels are defined by reducing the ferromagnetic degrees of freedom to a bivaluated variable, i.e. to an effective spin one-half. The reduction is performed after defining the local magnetic configuration space by a sphere $Sigma_x$, and integrating the relevant physical quantities over the two hemispheres $Sigma_x^{uparrow}$ and $Sigma_x^{downarrow}$. The configuration space is then extended to the $x$ direction for non-uniform magnetization excitations. The transport equations for both magnetic moments and magnetic energy are deduced, including the relaxation from one channel to the other. The heat transport equations for ferromagnets is deduced.



rate research

Read More

We develop a two-channel resistor model for simulating spin transport with general applicability. Using this model, for the case of graphene as a prototypical material, we calculate the spin signal consistent with experimental values. Using the same model we also simulate the charge and spin- dependent 1/f noise, both in the local and nonlocal four-probe measurement schemes, and identify the noise from the spin-relaxation resistances as the major source of spin-dependent 1/f noise.
We theoretically examine the spin-transfer torque in the presence of spin-orbit interaction (SOI) at impurities in a ferromagnetic metal on the basis of linear response theory. We obtained, in addition to the usual spin-transfer torque, a new contributioin $sim {bm j}_{rm SH}^{phantom{dagger}} cdot abla {bm n}$ in the first order in SOI, where ${bm j}_{rm SH}^{phantom{dagger}}$ is the spin Hall current driven by an external electric field. This is a reaction to inverse spin Hall effect driven by spin motive force in a ferromagnet.
163 - Yadong Xu , Bowen Yang , Chi Tang 2014
As a non-magnetic heavy metal is attached to a ferromagnet, a vertically flowing heat-driven spin current is converted to a transverse electric voltage, which is known as the longitudinal spin Seebeck effect (SSE). If the ferromagnet is a metal, this voltage is also accompanied by voltages from two other sources, i.e. the anomalous Nernst effect in both the ferromagnet and the proximity-induced ferromagnetic boundary layer. By properly identifying and carefully separating those different effects, we find that in this pure spin current circuit the additional spin current drawn by the heavy metal generates another significant voltage by the ferromagnetic metal itself which should be present in all relevant experiments.
77 - J. Ohe , M. Yamamoto , T. Ohtsuki 2002
We present a theoretical study of spin-dependent transport through a ferromagnetic domain wall. With an increase of the number of components of the exchange coupling, we have observed that the variance of the conductance becomes half. As the strength of the domain wall magnetization is increased, negative magnetoresistance is also observed.
In the normal metal/ferromagnetic insulator bilayer (such as Pt/Y$_{3}$Fe$_{5}$O$_{12}$) and the normal metal/ferromagnetic metal/oxide trilayer (such as Pt/Co/AlO$_{x}$) where spin injection and ejection are achieved by the spin Hall effect in the normal metal, we propose a minimal model based on quantum tunneling of spins to explain the spin-transfer torque and spin pumping caused by the spin Hall effect. The ratio of their damping-like to field-like component depends on the tunneling wave function that is strongly influenced by generic material properties such as interface $s-d$ coupling, insulating gap, and layer thickness, yet the spin relaxation plays a minor role. The quantified result renders our minimal model an inexpensive tool for searching for appropriate materials.
comments
Fetching comments Fetching comments
Sign in to be able to follow your search criteria
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا