Do you want to publish a course? Click here

Orbital Selectivity in Hunds metals: The Iron Chalcogenides

332   0   0.0 ( 0 )
 Added by Nicola Lanat\\`a
 Publication date 2012
  fields Physics
and research's language is English




Ask ChatGPT about the research

We show that electron correlations lead to a bad metallic state in chalcogenides FeSe and FeTe despite the intermediate value of the Hubbard repulsion $U$ and Hunds rule coupling $J$. The evolution of the quasi particle weight $Z$ as a function of the interaction terms reveals a clear crossover at $U simeq$ 2.5 eV. In the weak coupling limit $Z$ decreases for all correlated $d$ orbitals as a function of $U$ and beyond the crossover coupling they become weakly dependent on $U$ while strongly depend on $J$. A marked orbital dependence of the $Z$s emerges even if in general the orbital-selective Mott transition only occurs for relatively large values of $U$. This two-stage reduction of the quasi particle coherence due to the combined effect of Hubbard $U$ and the Hunds $J$, suggests that the iron-based superconductors can be referred to as Hunds correlated metals.



rate research

Read More

A magnetic field parallel to an electrical current does not produce a Lorentz force on the charge carriers. Therefore, orbital longitudinal magnetoresistance is unexpected. Here we report on the observation of a large and non saturating magnetoresistance in lightly doped SrTiO$_{3-x}$ independent of the relative orientation of current and magnetic field. We show that this quasi-isotropic magnetoresistance can be explained if the carrier mobility along all orientations smoothly decreases with magnetic field. This anomalous regime is restricted to low concentrations when the dipolar correlation length is longer than the distance between carriers. We identify cyclotron motion of electrons in a potential landscape tailored by polar domains as the cradle of quasi-isotropic orbital magnetoresistance. The result emerges as a challenge to theory and may be a generic feature of lightly-doped quantum paralectric materials.
The theoretical understanding of the nematic state of iron-based superconductors and especially of FeSe is still a puzzling problem. Although a number of experiments calls for a prominent role of local correlations and place iron superconductors at the entrance of a Hund metal state, the effect of the electronic correlations on the nematic state has been theoretically poorly investigated. In this work we study the nematic phase of iron superconductors accounting for local correlations, including the effect of the Hunds coupling. We show that Hunds physics strongly affects the nematic properties of the system. It severely constraints the precise nature of the feasible orbital-ordered state and induces a differentiation in the effective masses of the zx=yz orbitals in the nematic phase. The latter effect leads to distinctive signatures in different experimental probes, so far overlooked in the interpretation of experiments. As notable examples the splittings between zx and yz bands at Gamma and M points are modified, with important consequences for ARPES measurements.
100 - H. Iwasawa , Y. Aiura , T. Saitoh 2005
We present detailed energy dispersions near the Fermi level on the monolayer perovskite ruthenate Sr2RuO4, determined by high-resolution angle-resolved photoemission spectroscopy. An orbital selectivity of the kink in the dispersion of Sr2RuO4 has been found: A kink for the Ru 4d_xy orbital is clearly observed, but not for the Ru 4d_yz and 4d_zx ones. The result provides insight into the origin of the kink.
We report a quantum phase transition between orbital-selective Mott states, with different localized orbitals, in a Hunds metals model. Using the density matrix renormalization group, the phase diagram is constructed varying the electronic density and Hubbard $U$, at robust Hunds coupling. We demonstrate that this transition is preempted by charge fluctuations and the emergence of free spinless fermions, as opposed to the magnetically-driven Mott transition. The Luttinger correlation exponent is shown to have a universal value in the strong-coupling phase, whereas it is interaction dependent at intermediate couplings. At weak coupling we find a second transition from a normal metal to the intermediate-coupling phase.
Electron correlations play a central role in iron-based superconductors. In these systems, multiple Fe $3d$-orbitals are active in the low-energy physics, and they are not all degenerate. For these reasons, the role of orbital-selective correlations has been an active topic in the study of the iron-based systems. In this paper, we survey the recent developments on the subject. For the normal state, we emphasize the orbital-selective Mott physics that has been extensively studied, especially in the iron chalcogenides, in the case of electron filling $n sim 6$. In addition, the interplay between orbital selectivity and electronic nematicity is addressed. For the superconducting state, we summarize the initial ideas for orbital-selective pairing, and discuss the recent explosive activities along this direction. We close with some perspectives on several emerging topics. These include the evolution of the orbital-selective correlations, magnetic and nematic orders and superconductivity as the electron filling factor is reduced from $6$ to $5$, as well as the interplay between electron correlations and topological bandstructure in iron-based superconductors.
comments
Fetching comments Fetching comments
Sign in to be able to follow your search criteria
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا